Invent Y our Own
Computer Games with Python

2nd Edition

Al Sweigart

Copyright © 2008, 2009, 2010 by Albert Sweigart

Some Rights Reserved. "Invent Your Own Computer Games with Python" ("Invent
with Python") is licensed under a Creative Commons Attribution-Noncommercial-
Share Alike 3.0 United States License.

You are free:
@ To Share — to copy, distribute, display, and perform the work

. To Remix — to make derivative works

Under the following conditions:

@ Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or your
use of the work). (Visibly include the title and author's name in any excerpts of this
work.)

@ Noncommercial — You may not use this work for commercial purposes.

@ Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this one.

This summary is located here:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Your fair use and other rights are in no way affected by the above. There is a
human-readable summary of the Legal Code (the full license), located here:
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

Book Version 13
ISBN 978-0-9821060-1-3

2nd Edition

For Caro, with more love
than | ever knew | had.

A Note to Parents and Fellow
Programmers

Thank your for reading this book. My motivation for writing this book comes from a gap
| saw in today's literature for kids interested in learning to program. | started proggm
when | was 9 years old in the BASIC language with a book similar to this one. During the
course of writing this, I've realized how a modern language like Python has made
programming far easier and versatile for a new generation of programmers. Python has a
gentle learning curve while still being a serious language that is used by programmers
professionally.

The current crop of programming books for kids that I've seen fell into two categories.
First, books that did not teach programming so much as "game creation software" or a
dumbed-down languages to make programming "easy" (to the point that it is no longer
programming). Or second, they taught programming like a mathematics textbook: all
principles and concepts with little application given to the reader. This book takes a
different approach: show the source code for games right up front and explain
programming principles from the examples.

| have also made this book available under the Creative Commons license, which allows
you to make copies and distribute this book (or excerpts) with my full permission, as long
as attribution to me is left intact and it is used for noncommercial purposes. (See the
copyright page.) | want to make this book a gift to a world that has given me so much.
Thank you again for reading this book, and feel free to email me any questions or
comments.

Al Sweigart
al@inventwithpython.com

The full text of this book is available in HTML or PDF format at:
http://inventwithpython.col

My Richard The Third The
video Game s going to be
FANTASTIC.

\\\\MAN I HEAR THAT

A1T I need to
do 15 program
it

IR COMiCS

LATER:

Um, APPARENTLY, programming is Tor folks who
are thrilled when a computer reminds them
they're missing a bracket or semicolon? It

e (-, must be, because they make
. that happen =0 OFTEN,

; S0 it's not going well?
I CaM'T EVEM GET RICHARD

THE THIRD To MOVE.

vou know what my game

is now? ame s

MIBELES, w1t the text

changed from

"Copyright

M1crusuft 1990"

“man, forget

th1s

=

Programming's a skill! C
could pick up easily.

binary and B+ search t

to know ever¥th1n gl I
I know know the diffe
~ that!

is how to

make Richa
III's sucky
t. horse do
,double jum
, yOU know?

L cCan run,

I just thought it was a sk%11 I

rence hetween friggin'
ALL I

WANT TO RMNOW

PS5, f
You've
ot to
Earn
To crawl
= hefore wou

I don't need

Hey, here's a tip!
don't need to ’

regs!

rd

Crawling
sucks!

T-Rex.

(9 2002 Ryan Morth

winh . QWANTZ . COm

Dinosaur Comics reproduced with permission. Thanks Ryan!

Who is this book for?

Programming isn't hard. But it is hard to find learning materials that teach you to @stingpthings with

programming. Other computer books go over many topics that most newbie coders don't need. This book wil
teach you how to program your own computer games. You will learn a useful skill and have fun gamesdo show f

it!

This book is for:

« Complete beginners who wants to teach themselves computer programming, even if they haseuso pre

experience programming.

« Kids and teenagers who want to learn computer programming by creating games. Kids as young as 9 or 10

years old should be able to follow along.

« Adults and teachers who wish to teach others programming.
« Anyone, young or old, who wants to learn how to program by learning a professional programming

language

Table of Contents

Source Code Listing

hello.py 21
guess.py 30
jokes.py 51
dragon.py 58
buggy.py 83
coinFlips.py 87
hangman.py 103
tictactoe.py 150
truefalsefizz.py 172
bagels.py 184
sonar.py 213
cipher.py 244
reversi.py 261
aisiml.py 292
aisim2.py 294
aisim3.py 299
pygameHelloWorld.py 309
animation.py 324
collisionDetection.py 338
pygamelnput.py 348
spritesAndSounds.py 360
dodger.py 371

1 Installing Python
Downloading and Installing Python

Starting Python

How to Use This Book
The Featured Programs
Line Numbers and Spaces
Summary

2 The Interactive Shell

Some Simple Math Stuff
Evaluating Expressions
Storing Values in Variables

oo 00O N U1 O D DN P

e
N R

Using More Than One Variable 15

Summary 16
Strings, and Your First Program 18
Strings 18
String Concatenation 19
Writing Programs in IDLE's File Editor 20
Hello World! 20
How the "Hello World" Program Works 23
Summary 26
Guess the Number 28
The "Guess the Number" Game 28
Sample Run of "Guess the Number" 29
Guess the Number's Source Code 29
Thei nport Statement 31
Ther andom r andi nt () Function 32
Passing Arguments to Functions 34
Blocks 36
The Boolean Data Type 37
Comparison Operators 37
Conditions 38
Experiment with Booleans, Comparison Operators, and Condiggns
Looping with While Statements 41
The Player Guesses 41
i f Statements 44
Leaving Loops Early with thbr eak Statement 45
Check if the Player Won 46
Summary: What Exactly is Programming? 47
A Web Page for Program Tracing 48
Jokes 50
Make the Most opri nt () 50
Sample Run of Jokes 50
Joke's Source Code 51

Escape Characters 52

Quotes and Double Quotes
Theend Keyword Argument
Summary

Dragon Realm

Introducing Functions

Sample Run of Dragon Realm
Dragon Realm's Source Code
def Statements

Boolean Operators

Return Values

Variable Scope

Parameters

Where to Put Function Definitions
Displaying the Game Results
The Colon :

Where the Program Really Begins
Designing the Program
Summary

Using the Debugger
Bugs!

Starting the Debugger

Stepping

The Go and Quit Buttons
Stepping Over and Stepping Out
Find the Bug

Break Points

Summary

Flow Charts

How to Play "Hangman"

Sample Run of "Hangman"
ASCII Art

Designing a Program with a Flowchart
Creating the Flow Chart

53
54
55
56
56
57
57
60
61
65
65
68
70
71
73
73
75
76
77
77
78
80
81
81
83
86
88
89
89
89
91
92
93

10

Summary: The Importance of Planning Out the Game

Hangman
Hangman's Source Code

Multi-line Strings
Constant Variables
Lists

Changing the Values of List Items with Index Assignment

List Concatenation

Thei n Operator

Removing Items from Lists witdel Statements
Lists of Lists

Methods

Ther ever se() andappend() List Methods
The Difference Between Methods and Functions
Thespl it () Function

Ther ange() andl i st () Functions

f or Loops

elif ("Else If") Statements

Review of the Functions We Defined

Making New Changes to the Hangman Program
Dictionaries

Sets of Words for Hangman

Ther andom choi ce() Function

Multiple Assignment

Summary

Tic Tac Toe

Sample Run of Tic Tac Toe

Source Code of Tic Tac Toe

Designing the Program

Game Al

List References

Short-Circuit Evaluation

TheNone Value

100
102
103
107
108
108
110
110
111
112
113
114
115
116
116
120
121
127
131
132
139
142
143
145
147
148
149
150
154
156
162
170
175

11

12

13

14

Summary: Creating Game-Playing Artificial Intelligences
Bagels

Sample Run

Bagel's Source Code

Designing the Program

Ther andom shuf fl e() Function
Augmented Assignment Operators
Thesort () List Method

Thej oi n() String Method

String Interpolation

Summary: Getting Good at Bagels
Cartesian Coordinates

Grids and Cartesian Coordinates
Negative Numbers

Math Tricks

Absolute Values and thebs() Function
Coordinate System of a Computer Monitor
Summary: Using this Math in Games
Sonar Treasure Hunt

Sample Run

Sonar's Source Code

Designing the Program

Ther enove() List Method

Summary: Review of our Sonar Game
Caesar Cipher

About Cryptography

The Caesar Cipher

ASCII, and Using Numbers for Letters
Thechr () andor d() Functions
Sample Run of Caesar Cipher

Caesar Cipher's Source Code

Thei sal pha() String Method

Thei supper () andi sl ower () String Methods

182
183
184
184
186
188
190
192
192
194
198
200
201
202
204
206
207
208
209
210
213
218
229
238
239
239
240
241
242
243
244
247
248

15

16

17

Brute Force

Summary: Reviewing Our Caesar Cipher Program
Reversi

How to Play Reversi

Sample Run

Reversi's Source Code

Thebool () Function

Summary: Reviewing the Reversi Game
Al Simulation

"Computer vs. Computer" Games
AISim1.py Source Code

AISim2.py Source Code

Percentages

Ther ound() Function

Comparing Different Al Algorithms
AISim3.py Source Code

Learning New Things by Running Simulation Experiments

Graphics and Animation
Installing Pygame

Hello World in Pygame

Hello World's Source Code

Importing the Pygame Module

Variables Store References to Objects
Colors in Pygame

Fonts, and the pygame.font.SysFont() Function
Attributes

Constructor Functions and thgpe() function.
The pygame.PixelArray Data Type

Events and the Game Loop

Animation

The Animation Program's Source Code
Some Small Modifications

Summary: Pygame Programming

251
253
256
255
257
260
276
290
291
291
292
294
296
297
299
299
305
306
307
308
308
311
313
313
315
316
317
321
322
324
324
335
335

18

19

20

Collision Detection and Input
The Collision Detection Program's Source Code

The Collision Detection Function

Thepygane. ti me. C ock Objectand i ck() Method

The Keyboard Input Program's Source Code
Thecol | i derect () Method

Summary: Collision Detection and Pygame Input
Sound and Images

Image and Sound Files

Sprites and Sounds Program

The Sprites and Sounds Program's Source Code
Setting Up the Window and the Data Structure
Thepygane. transform scal e() Function
Summary: Games with Graphics and Sounds
Dodger

Review of the Basic Pygame Data Types
Dodger's Source Code

Implementing the Cheat Codes

Modifying the Dodger Game

Summary: Creating Your Own Games

Appendix A

Differences Between Python 2 and 3

Appendix B

Statements, Functions, and Methods Reference

Appendix C

Running Python Programs without Python Installed

Appendix D

Common Error Messages in Python
Glossary

About the Author

337
337
341
344
348
356
356
358
360
360
360
364
364
368
369
370
371
392
397
397

399

403

404

407

411
421

Topics Covered In This Chapter:

Downloading and installing the Python interpreter.
Using IDLE's interactive shell to run instructions.
How to use this book.

The book's website at http://inventwithpython.com

Hello! This is a book that will teach you how to program by showing you how to create
computer games. Once you learn how the games in this book work, you'll be able to create
your own games. All you'll need is a computer, some software called the Python
Interpreter, and this book. The software you'll need is free and you can download it from
the Internet.

When | was a kid, | found a book like this that taught me how to write my first programs
and games. It was fun and easy. Now as an adult, | still have fun programming computers,
and | get paid for it. But even if you don't become a computer programmer when you grow
up, programming is a useful and fun skill to have.

Computers are very useful machines. The good news is that learning to program a
computer is easy. If you can read this book, you can program a computer. A computer
program is just a bunch of instructions run by a computer, just like a storybook is just a
whole bunch of sentences read by the reader.

These instructions are like the turn-by-turn instructions you might get for walking to a
friend's house. (Turn left at the light, walk two blocks, keep walking until you find the first
blue house on the right.) The computer follows each instruction that you give it in the order
that you give it. Video games are themselves nothing but cor programs. (And ver

1

fun computer programs

In this book, any words you need to know will look like thiorexample, the word
"program” is defined in the previous paragraph.

In order to tell a computer what you want it to do, you write a program in a language that
the computer understands. The programming language this book teaches is named Python.
There are many different programming languages including BASIC, Java, Python, Pascal,
Haskell, and C++ (pronounced, "c plus plus").

When | was a kid most people learned to program in BASIC as their first language. But
new programming languages have been invented since then, including Python. Python is
even easier to learn than BASIC and it's a serious programming language used by
professional computer programmers. Many adults use Python in their work (and when
programming just for fun).

The first few games we'll create together in this book will probably seem simple
compared to the games you've played on the Xbox, Playstation, or Wii. They don't have
fancy graphics or music but that's because they're meant to teach you the basics. They're
purposely simple so that we can focus on learning to program. Games don't have to be
complicated to be fun. Hangman, Tic Tac Toe, and making secret codes are simple to
program but are also fun.

We'll also learn how to make the computer solve some math problems in the Python
shell. (Don't worry if you don't know a lot of mathematics. If you know how to add and
multiply, you know enough math to do programming. Programming is more about problem
solving in general than it is about solving math problems.)

Downloading and Installing Python

Before we can begin programming you'll need to install the Python software; specifically
the Python interpreter. (You may need to ask an adult for help here.) The interrater
program that understands the instructions that you'll write in the Python language. Without
the interpreter, your computer won't understand these instructions and your programs won't
work. (We'll just refer to "the Python interpreter" as "Python" from now on.)

Because we'll be writing our games in the Python language, we need to download Python
first, from the official website of the Python programming language,
http://www.python.org

I'm going to give you instructions for installing Python on Microsoft Windows, not
because that's my favorite operating system but because chances are that's the operating
system that your computer is running. You might want the help of someone else to
download and install the Python software.

When you get to python.org, you should see a list of links on the left (About, News,
Documentation, Downloa and so on.) Click on trDownload link to go to thr download

2

1 - Installing Python
page, then look for the file calliPython 3.1 Windows Installer (Windows binary--
does not include source) and click on its link to download Python for Windows.

=

) Download Python Software - Mozilla Firefox

File Edit Yiew History Bookmarks Tools Help

6 - c e} " htkp: ffpwthon. orgfdownload)

% | Download Python Software E3

FOUMNDATION

Also look at the detailed Python 3.1 page:
CORE DEVELOPMENT *

LIMNKES 5 e Python 3.1 compressed source tarball
Fython 3.1 bzipped source tarball (for U
Fython 3.1 Windows installer (Window
Fython 3.1 Windows AMOBS installer (
Fython 3.1 Mac Installer Disk Image

Figure 1-1: Click the Windows installer link to download Python for Windows from http://www.python.org

Double-click on the python-3.1.mdfile that you've just downloaded to start the Python
installer. (If it doesn't start, try right-clicking the file and choosing Install.) Once the
installer starts up, click the Nekutton and just accept the choices in the installer as you go
(no need to make any changes). When the install is finished, click Finish

Important Note! Be sure to install Python 3, and not Python 2. The programs in this
book use Python 3, and you'll get errors if you try to run them with Python 2.

The installation for Mac OS is similar. Instead of downloading the .msi file from the
Python website, download the .dmg Mac Installer Disk Image file instead. The link to this
file will look something like "Mac Installer disk image (3.1.1)" on the "Download Python
Software" web page.

If your operating system is Ubuntu, you can install Python by opening a terminal
window (click on Applications > Accessories > Terminal) and entering sudo apt-get
install python3 then pressing Enter. You will need to enter the root password to
install Python, so ask the person who owns the computer to type in this password.

There may be a newer version of Python available than 3.1. If so, then just download the
latest version. The game programs in this book will work just the same. If you have any
problems, you can always Google for "installing Python on <your operating system's
name>". Python is a very popular language, so you should have no difficulty finding help.

A video tutorial of how to install Python is available from this book's website at
http://inventwithpython.com/videc.

Starting Python

If your operating system is Windows XP, you should be able to run Python by choosing
Start > Programs > Python 3.1 > IDLE (Python GUI). When it's running it should
looking something like Figure 1-2. (But different operating systems will look slightly
different.)

Python Shell
File Edit Shel Debug Options Windows Help
Python 3.1rcl (r3lrocl:73069, May 31 Z009, 05:57:10) [H
AC w1500 32 bit [(Intel)] on win3iz
Type "copyright™, "ocredits"™ or "license() ™ for more in

formation.
]

Figure 1-2: The IDLE program's interactive shell on Windows.

IDLE stands for hteractive [@vd_opment Eavironment. The development environment
is software that makes it easy to write Python programs. We will be using IDLE to type in
our programs and run them.

The window that appears when you first run IDLE is called the interactive shell. A shell
IS a program that lets you type instructions into the computer. The Python shell lets you
type Python instructions, and the shell sends these instructions to software called the
Python interpreter to perform. We can type Python instructions into the shell and, because
the shell is interactive, the computer will read our instructions and respond in some way.
(Ideally in a way that we expect but that will depend on whether we write the correct
instructions.)

How to Use This Book

There are a few things you should understand about this book before you get started.
"Invent with Python" is different from other programming books because it focuses on the
complete source code for different games. Instead of teaching you programming concepts
and leaving it up to you to figure out how to make fun games with those concepts, this book
shows you fun games and tl explains how they are put togetl

4

1 - Installing Python

The Featured Programs

Most chapters begin with a sample run of the featured program. This sample run shows
you whatthe program's output looks like, with what the user types in shown apbotd
This will give you an idea of what the complete game will look like when you have entered
the code and run it.

Some chapters also show the complete source code of the game, but remember: you don't
have to enter every line of code right now. Instead, you can read the chapter first to
understand what each line of code does and then try entering it later.

You can also download the source code file from this book's website. Go to the URL

http://inventwithpython.com/source and follow the instructions to download the source
code file.

Line Numbers and Spaces

When entering the source code yourselfndbtype the line numbers that appear at the
beginning of each line. For example, if you see this in the book:

9. number = random.randint(1, 20)

You do not ned to type the "9." on the left side, or the space that immediately follows it.
Just type it like this:

number = random.randint(1, 20)

Thosenunbers are only used so that this book can refer to specific lines in the code.
They are not a part of the actual program.

Aside from the line numbers, be sure to enter the code exactly as it appears. Notice that
some of the lines don't begin at the leftmost edge of the page, but are indented by four or
eight spaces. Be sure to put in the correct number of spaces at the start of each line. (Since
each character in IDLE is the same width, you can count the number of spaces by counting
the number of characters above or below the line you're looking at.)

For example, you can see that the second line is indented by four spaces because the four
characters (Vhil") on the line above are over the indented space. The third line is
indented by another four spaces (the four characiérs, dre above the third line's
indented space

while guesses < 10:
if number == 42:
print('Hello")

Text Wrapping in This Book

Some lines of code are too long to fit on one line on the page, and the text of the code
will wrap around to the next line. When you type these lines into the file editor, enter the
code all on one line without pressing Enter.

You can tell when a new line starts by looking at the line numbers on the left side of the
code. For example, the code below has only two lines of code, even though the first line
wraps around:

1. print("This is the first line! XXXXXXXXXXXXXXX
XXXXXXXXXXXX')
2. print('This is the second line! ")

Tracing the Program Online

You can visit http://inventwithpython.com/traces to see a trace through each of the
programs in this book. Tracing a program means to step through the code one line at a time,
in the same way that a computer would execute it. The traces web page has notes and
helpful reminders at each step of the trace to explain what the program is doing, so it can
help you better understand why these programs work the way they do.

Checking Your Code Online

Some of the games in this book are a little long. Although it is very helpful to learn
Python by typng out the source code for these games, you may accidentally make typos
that cause your game programs to crash. It may not be obvious where the typo is.

You can copy and paste the text of your source code to the online diff tool on the book's
website. The diff tool will show any differences between the source code in the book and
the source code you've typed. This is an easy way of finding any typos in your program.

Copying and pasting text is a very useful computer skill, especially for computer
programming. There is a video tutorial on copying and pasting at this book's website at
http://inventwithpython.com/videos/.

The online diff tool is at this web pachttp://inventwithpython.com/di. A video
6

1 - Installing Python
tutorial of how to use the diff tool is available from this book's we at
http://inventwithpython.com/videos/.

Summary

This chapter has helped you get started with the Python software by showing you the
python.org website where you can download it for free. After installing and starting the
Python IDLE software, we will be ready to learn programming starting in the next chapter.

This book's website at http://inventwithpython.com has more information on each of the
chapters, including an online tracing website that can help you understand what exactly
each line of the prograr do

Topics Covered In This Chapter:

Integers and Floating Point Numbers
Expressions

Values

Operators

Evaluating Expressions

Storing Values in Variables

Before we start writing computer games, we should learn some basic programming
concepts first. These concepts are values, operators, expressions, and variables. We won't
start programming in this chapter, but knowing these concepts and the names of things will
make learning to program much easier. This is because most programming is built on only
a few simple concepts combined together to make advanced programs.

Let's start by learning how to use Python's interactive shell.

Some Simple Math Stuff

To open IDLE on Windows, click o8tart > Programs > Python 3.1 > IDLE (Python
GUI). With IDLE open, let's do some simple math with Python. The interactive shell can
work just like a calculator. Type 2+2 into the shell and press the Enter key on your
keyboard. (On some keyboards, this is the RETURN key.) As you can see in Figure 2-1,
the computer shou respond with the number 4; the sum of .

2 - The Interactive Shell
]

Python Shell
File Edit Shel Debug Options Windows Help

Python 3.0.1 (r301:69561, Febh 13 2009, Z0:04:18) [M3
C o w.1500 32 bhbit [(Intel)] on win3z

Type M"oopyright™, foreditza™ or "license() ™ for more
information.

x> 2 4+ 2

4

e

Figure 2-1: Type2+2 into the shell.

As you can see, we can use the Python shell just like a calculator. This isn't a program by
itself because we are just learning the basics right now. The + sign tells the computer to add
the numbers 2 and 2. To subtract numbers use the - sign, and to multiply numbers use an
asterisk %), like so:

Table :-1: The various ma
operators in Pytho

2+2 additon
2-2 subtraction
2*2 multiplication
2/2 division

When used in this way, +, -, *, and / are called operatbegsause they tell the
computer to perform the specified operation on the numbers surrounding them.

Integers and Floating Point Numbers

In programming (and also in mathematics), whole numbers like 4, 0, and 99 are called
integers. Numbers with fractions or decimal points (like 3.5 and 42.1 and 5.0) are not
integers. In Python, the number 5 is an integer, but if we wrote it as 5.0 it would not be an
integer. Numbers with a decimal point are cafledting point numbers. In
mathematics, 5.0 is still considered an integer and the same as the number 5, but in

computer programming the computer considers any number with a decimal point as not an
integer

Expressions

Try typing some of these math problems into the shell, pressing Enter key after each one.

2+2+2+2+2
8*6

10-5+6

2 + 2

Figure 2-2 is what the interactive shell in IDLE will look like after you type in the

instructions above.

Frr 242
4

10
x> BF6
45

11

ey 2+
4

2z |

interface and no data 15 Ser]
A LRSS RS SRR

IDLE 1.2.1

Frr Z4E4E2+E24E

=rx 10-5+6

Figure 2-2: What the IDLE window looks like after entering instructions.

These math problems are called
expressions. Computers can solve

millions of these problems in seconds.

Expressions are made up of valu@bke
numbers) connected mperators (the
math signs). Let's learn exactly what
values and operators are.

As you can see with the last

expression in the above example, you

can put any amount of spaces in

operator
value

|
RN
2+2

——)

expression

Figure -3: An expression a made up of values and opera

between the integers and these operators. (But be sure to always start at the very beginning

of the line, with no spaces in front.)

Numbers are a type of value. Integers are a type of number. But, even though integers are
numbers, not all numbers are integers. (For example, fractions and numbers with decimal
points like 2.5 are numbers that are not integers.)

10

2 - The Interactive Shell
This i< like how a cat is a type of pet, but not all pets are cats. Someone coulc pet
dog or a pet lizard. An expressiors made up of values (such as integers like 8 and 6)
connected by an operator (such as the * multiplication sign). A single value by itself is also
considered an expression.

In the next chapter, we will learn about working with text in expressions. Python isn't
limited to just numbers. It's more than just a fancy calculator!

Evaluating Expressions

When a computer solves the expresdifn+ 5 and gets the value 15, we say it has

evaluated the expression. Evaluating an expression reduces the expression to a single
value, just like solving a math problem reduces the problem to a single number: the answer.

The expressions 10 + 5and 10 + 3+ 2 have the same value, because they both
evaluate to 15. Even single values are considered expressions: The expression 15 evaluates
to the value 15.

However, if you just type 5 + into the interactive shell, you will get an error message.

>>> 5 +
SyntaxError: invalid syntax

This error happened because 5is not an expression. Expressions have values
connected by operators, but the + operator always expects to connect two things in Python.
We have only given it one. This is why the error message appeared. A syntax error means
that the computer does not understand the instruction you gave it because you typed it
incorrectly. Python will always display an error message if you enter an instruction that it
cannot understand.

This may not seem important, but a lot of computer programming is not just telling the
computer what to do, but also knowing exactly how to tell the computer to do it.

Expressions Inside Other Expressions

Expressions can also contain other expressions. For example, in the ex@esSion
+8,the2+5 patis its own expression. Python evaluates 2 +t6 7, so the original
expression becomes 7 + 8. Python then evaluates this expression to 15

Think of an expression as being a stack of pancakes. If you put two stacks of pancakes
together, you still have a stack of pancakes. And a large stack of pancakes can be made up
of smaller stacks of pancakes that were put together. Expressions can be combined together
to form larger expressions in the same way. But no matter how big an expression is it also
evaluates to a single answer, just like 2 + 5 + 8 evaluates tb5.

11

Storing Values in Variables

When we program, we will often want to save the values that our expressions evaluate to
so we can use them later in the program. We can store values in variables

Think of variables like a box that can hold values. You can store values inside variables
with the = sign (called the assignment operatdrFor example, to store the value 15 in a
variable named "spam", enter spam = 15 into the shell:

>>> gpam = 15
>>>

You can think of the variable like a
box with the value 15 inside of it (as
shown in Figure 2-4). The variable
name "spam" is the label on the box (so
we can tell one variable from another)
and the value stored in it is like a small
note inside the box.

When you press Enter you won't see
anything in response, other than a
blank line. Unless you see an error
message, you can assume that the |
instruction has been executed Figure «-4: Variables ar like boxes that can hold values in th
successfully. The next >>> prompt will
appear so that you can type in the next instruction.

This instruction (called an assignment statemehtreates the variable spam and
stores the value 15 in it. Unlike expressioagtements are instructions that do not
evaluate to any value, which is why there is no value displayed on the next line in the shell.

It might be confusing to know which instructions are expressions and which are
statements. Just remember that if the instruction evaluates to a single value, it's an
expression. If the instruction does not, then it's a statement.

An assignment statement is written as a variable, followed by the = equal sign, followed
by an expression. The value that the expression evaluates to is stored inside the variable.
The value 15 by itself is an expression. Expressions made up of a single value by itself are
easy to evaluate. These expressions just evaluate to the value itself. For example, the
expression 15 evaluates to 15!

Remember, variables store values, not expressions. For example, if we had the statement,
spam = 10 + 5, then the expression 10 + 5 would first be evaluated to 15 and then
the value 15 would be stored in the varialdpam.

12

2 - The Interactive Shell
The first time¢ you store a value inside a variable by using an assignment stat
Python will create that variable. Each time after that, an assignment statement will only
replace the value stored in the variable.

Now let's see if we've created our variable properly. If we type spam into the shell by
itself, we should see what value is stored inside the variable spam.

>>> spam = 15
>>> spam

15

>>>

Now, spam evaluates to the value inside the variable, 15.

And here's an interesting twist. If we now enter spam +iBto the shell, we get the
integer 20, like so.

>>> gpam = 15
>>>gpam + 5
20

>>>

Thatmay seem odd but it makes sense when we remember that we set the value of spam
to 15. Because we've set the value of the variable spabbiavriting spam + 5 is like
writing the expression 15 + 5.

If you try to use a variable before it has been created, Python will give you an error
because no such variable would exist yet. This also happens if you mistype the name of the
variable.

We can change the value stored in a variable by entering another assignment statement.
For example, try the following:

>>> gpam = 15
>>> spam + 5
20

>>> gpam = 3
>>> spam + 5
8

>>>

The first time we enter spam + 5, the expression evaluates to 20, because we stored

13

the valuel5 inside the variablspam. But when we entespam = 3 , the valuel5 is
replaced, or overwritten, with the value 3. Now, when we esgam + 5, t heexpression
evaluates to 8 because the valuspédm is now 3.

To find out what the current value is inside a variable, just enter the variable name into
the shell.

Now here's something interesting. Because a variable is only a name for a value, we can
write expressions with variables like this:

>>> gpam = 15
>>> spam + spam
30

>>> gpam - spam
0

>>>

When the variable spam has the integer valliestored in it, entering spam + spam
is the same as entering 15 + 15, which evaluates30. And spam - spam is the same
as 15 - 15, which evaluates to 0. The expressions above use the variable spam twice.

You can use variables as many times as you want in expressions. Remember that Python
will evaluate a variable name to the value that is stored inside that variable, each time the

variable is used.

We can even use the value in #jgmam variable to assign spam a new value:

>>> spam = 15

>>> spam = spam + 5
20

>>>

The assignment statement spam = spam + 5 is like saying, "the new value of the
spam variable will be the current value of spam plus five." Remember that the variable on
the left side of the = sign will be assigned the value that the expression on the right side
evaluates to. We can also keep increasing the valygam by 5 several times:

>>> gpam = 15

>>> gpam = spam + 5
>>> gpam = spam + 5
>>> gpam = spam + 5
>>> spam

30

14

) 2 -The Interactivle Shell
P>>> :

Overwriting Variables

Changing the value stored inside a variable is easy. Just perform another assignment
staement with the same variable. Look what happens when you enter the following code
into the interactive shell:

>>> gpam = 42
>>> print(spam)
42

>>> spam = 'Hello’
>>> print(spam)
Hello

Initially, thespam variable had the integd®@ placed inside of it. This is why the first
print(spam) prints out 42. But when we execute spam = 'Hello’, the 42 value is
tossed out of the variable and forgotten as the new 'Hello' string value is placed inside
the spamvariable.

Replacing the value in a variable with a new value is called overwrithegalue. It is
important to know that the old value is permanently forgotten. If you want to remember this
value so you can use it later in your program, store it in a different variable before
overwriting the value:

>>> gpam = 42

>>> print(spam)

42

>>> oldSpam = spam
>>> gpam = 'Hello’
>>> print(spam)
Hello

>>> print(oldSpam)
42

In theabove example, before overwriting the value in spam, we store that value in a
variable named oldSpam.

Using More Than One Variable

When we program we won't always want to be limited to only one variable. Often we'll
need to use multiple variabl

15

For example let's assign different values to two variables naeggs andfizz , like
so:

>>>fizz = 10
>>>eggs = 15

Now the fizz variable has 10 inside it, and eggs has 15 inside it.

Figure 2-5: The “fizz"and "eggs" variables have values stored in them.

Without changing the value in our spam variable, let's try assigning a new value to the
spam variable. Enter spam = fizz + eggs into the shell then entgpam into the
shell to see the new value of spam. Can you guess what it will be?

>>> fizz = 10

>>> eggs = 15

>>> spam = fizz + eggs
>>> spam

25

>>>

Thevadue in spamis now25 because when we add fizz and eggswe are adding the
values stored inside fizz and eggs.

Summary

In this chapter you learned the basics about writing Python instructions. Python needs
you to tell it exactly what to do in a strict way, because computers don't have common
sense and only understand very sir instructions. You have learned that Python

16

2 - The Interactive Shell
evaluate expressions (tha reduce the expression to a single value), anc
expressions are values (such as 2 or 5) combined with operators (such-gs You have
also learned that you can store values inside of variables in order to use them later on.

In the next chapter, we will go over some more basic concepts, and then you will be
ready tc program

17

Chapter

Strings

Topics Covered In This Chapter:

Flow of execution

Strings

String concatenation

Data types (such as strings or integers)
Using IDLE to write source code.
Saving and running programs in IDLE.
The print() function.

The input() function.

Comments

Capitalizing variables

Case-sensitivity

Overwriting variables

That's enough of integers and math for now. Python is more than just a calculator. Now
let's see what Python can do with text. In this chapter, we will learn how to store text in
variables, combine text together, and display them on the screen. Many of our programs
will use text to display our games to the player, and the player will enter text into our
programs through the keyboard. We will also make our first program, which greets the user
with the text, "Hello World!" and asks for the user's name.

Strings

In Python, we work with little chunks of text called string¥Ve can store string values
inside variables just like we can store number values inside variables. When

18

3 - Strings
strings, we put them in between two single quotes ('), like

>>> gpam = 'hello’
>>>

The sngle quotes are there only to tell the computer where the string begins and ends
(and is not part of the string value).

Now, if you type spaminto the shell, you should see the contents of the spam variable
(the 'hello’ string.) This is because Python will evaluate a variable to the value stored
inside the variable.

>>> spam = 'hello’
>>> spam

‘hello’

>>>

Stiings can have almost any character or sign in them as well as spaces and numbers.
(Strings can't have single quotes inside of them without using an escape character. Escape
characters are described later.) These are all examples of strings:

‘hello’

'Hi there!

‘Albert’

'KITTENS'

"7 apples, 14 oranges, 3 lemons’

‘A long time ago in a galaxy far, far away...'
'O*&H#WY %*&OCfsdY O*&gfC%Y O*&%3yc8r2'

As we did with numerical values in the previous chapter, we can also put string values in
expressions. For example, the expression 4 * 2 + 3 is an expression with numerical
values that will evaluate to the intedet.

String Concatenation

You can add one string to the end of another by using the + operator, which is called
string concatenation. Try enterittgello’ + "World!" into the shell:

>>> 'Hello' + 'World!'
'HelloWorld!"
>>>

19

To keep the strin¢separate, put a space at the end o'Hello' string before the
single quote, like this:

>>> 'Hello ' + 'World!"
'Hello World!'
>>>

Strings and integers are differetdta types . All values have a data type. The data type
of the value 'Hello' is a string. The data type of the value 5 is an integer. The data type
of the data that tells us (and the computer) what kind of data it is.

Writing Programs in IDLE's File Editor

Until now we have been typing instructions one at a time into the interactive shell. When
we write programs though, we type in several instructions and have them run all at once.
Let's write our first program!

The name of the program that provides the interactive shell is called IDLE, the
Interactive DevelLopement Environment. IDLE also has another part called the file editor.

Click on the Filemenu at the top of the Python Shell window, and select New Window
A new blank window will appear for us to type our program in. This window is the file
editor .

Untitled
File Edit Format Run Options windows Help

Figure 3-1: The file editor window.

Hello World!

A tradition for programmers learning a new language is to make their first program
display the text "Hello world!" on the screen. We'll create our own Hello World program
now.

20

3 - Strings

When you enter your program, don't enter the numbers
at the left side of the code. They're there so we can refer
to each line by number in our explanation. If you look at
the bottom-right corner of the file editor window, it will
tell you which line the cursor is currently on.

Enter the following text into the new file editor Figure 3-2: The bottom right of the file
window. We call this text the program's source code €ditor window tells you where the cursor
because it contains the instructions that Python will 'S Thecursor s currently on fine 3
follow to determine exactly how the prograimould behave. (Remember, don't type ir
line numbers!)

IMPORTANT NOTE! The following program should be run by the Python 3
interpreter, not the Python 2.6 (or any other 2.x version). Be sure that you have the correct
version of Python installedlf you already have Python 2 installed, you can have Pyt
installed at the same time.) To download Python 3, go to
http//python.org/download/releases/3.1.1/ and install this version.

hello.py

This code can be downloaded from http://inventwithpython.com/hello.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

This program says hello and asks for my name.

print('Hello world!")

print('What is your name?")

myName = input()

print(’lt is good to meet you, ' + myName)

aorwbE

The IDLE program will give different types of instructions different colors. After you are
done typing this code in, the window should look like this:

hello. py - C:/Python30/hello. py
File Edit Format Run Ophions Windows Help

This program 2avys hello and asks for my hame.
print('Hello world!')

print (' What iz vour name')

myNatme = input()

print('It iz good to meet vou, ' + myName)

Figure -3: The file editor window will look like th after you type in the coc

21

Saving Your Program

Save As @EJ
Once you've) .
entered your Save v | L Python0 _ﬂ + @ ¥ E-
source code, save ; Z30iLs
it so that you Hhﬂ‘;f}m i
won't have to Documents j,b
retype it each u ks
time we start Bk I ..
IDLE. To do so, — il
choose the File ,.-f’) NEws
menu at the top of| i, pocumerss |- FEAOE
the File Editor
window, and then ,,515
click on Save As. i Coepatee
The Save As S
window should -«
open. Enter u}-uﬁ"’ﬁ File name [| Save |
Eﬁéol.\?grlnnetgix G Saveastype: | Puthon and lest Res [oy pow.” 1) - Cancel

then pressave.
(See Figure 3-4.)

Figure -4: Saving th program

You should save your programs every once in a while as you type them. That way, if
the computer crashes or you accidentally exit from IDLE, only the typing you've done
since your last save will be lost. Press Citrl-S to save your file quickly, without using the

mouse at all.

A video tutorial of how to use the file editor is available from this book's website at
http://inventwithpython.com/videos/.

If you get an error that looks like this:

Hello world!
What is your name?
Albert

myName = input()

Traceback (most recent call last):
File "C:/Python26/testl.py", line 4, in

File "<string>", line 1, in <module>
NameError: name 'Albert' is not defined

<module>

...then this means you are running the program with Python 2, instead of Python 3. You
can either install Python 3, or convert the sa code in this book to Python 2. Appendi»

22

3 - Strings
lists the differences between Pythc and 3 that you will need for this bo

Opening The Programs You've Saved

To load asaved program, choog@e > Open. Do that now, and in the window that
appears choose hello.jand press the Opehutton. Your saved hello.pgrogram should
open in the File Editor window.

Now it's time to run our program. From the File menu, choose Run > Run Martule
just press the F5 key on your keyboard. Your program should run in the shell window that
appeared when you first started IDLE. Remember, you have to press F5 from the file
editor's window, not the interactive shell's window.

When your program asks for your name, go ahead and enter it as shown in Figure 3-5:

interface. Thiz connection i
m interface and no data is sent

F||E E e e e el el e e e e e e e e

Th
prim
prim
myl=
prim

IDLE 3.0
Fry SESEESs==sSsS=sSsS=sSs=s=sSs==s=s========3
Fri

Hello world!

That is wour name?

Llbhert

It i=s good to meet wou, Llbhert
Fri

Figure 3-5: What the interactive shell looks like when running the "Hello World" program.

Now, when you push Enter, the program should greet yowsie) by name.
Congratulations! You've written your first program. You are now a beginning computer
programmer. (You can run this program again if you like by pressing F5 again.)

How the "Hello World" Program Works

How does this program work? Well, each line that we entered is an instruction to the
computer that is interpreted by Python in a way that the computer will understand. A
computer program is a lot like a recipe. Do the first step first, then the second, and so on
until you reach the end. Each instruction is followed in sequence, beginning from the very
top of the program and working down the list of instructions. After the program executes
the first line of instructions, it moves on and executes the second line, then the third, and so
on.

We call the program'’s following of instructions step-by-step the flow of executian
just the execution for short.

Now let's look at our program c line at a time to see what it's doing, beginning \
23

line number 1

Comments

|| 1. # This program says hello and asks for my name. ||

Thisline is called @omment . Any text following a# sign (called the pound sign) is
a comment. Comments are not for the computer, but for you, the programmer. The
computer ignores them. They're used to remind you of what the program does or to tell
others who might look at your code what it is that your code is trying to do.

Programmers usually put a comment at the top of their code to give their program a title.
The IDLE program displays comments in red to help them stand out.

Functions

A function is kind of like a mini-program inside your program. It contains lines of code
that are executed from top to bottom. Python provides some built-in functions that we can
use. The great thing about functions is that we only need to know what the function does,
but not how it does it. (You need to know that phiat() function displays text on the
screen, but you don't need to know how it does this.)

A function call is a piece of code that tells our program to run the code inside a
function. For example, your program can call the print() function whenever you want to
display a string on the screen. Trent() function takes the string you type in between
the parentheses as input and displays the text on the screen. Because we want to display
Hello world! on the screen, we type the print function name, followed by an
opening parenthesis, followed by thiello world!" string and a closing parenthesis.

The print () Function

This line is a call to the prinfunction, usually written as print() (with the string to
be printed going inside the parentheses).

3. print("What is your name?")

2. print('Hello world!) “

We add parentheses to the end of function names to make it clear that we're referring to a
function named print() , not a variable named print. The parentheses at the end of the
function let us know we are talking about a function, much like the quotes around the
number '42' tell us that we are talking about the string '42' and not the integer 42.

Line 3 is another print() function call. This time, the program displays "What is your

name?
24

3 - Strings
The i nput () Function

|| 4. myName = input() ||

Thisline has an assignment statement with a variaty@léme) and a function call
(input()). When input() is called, the program waits for input; for the user to enter
text. The text string that the user enters (your name) becomes the function's output value.

Like expressions, function calls evaluate to a single value. The value that the function
call evaluates to is called the return value. In this case, the return value of the input()
function is the string that the user typed in-their name. If the user typed in Albert, the
input() function call evaluates to the string ‘Albert’

The function named input() does not need any input (unlike tharint() function),
which is why there is nothing in between the parentheses.

|| 5. print(lt is good to meet you, ' + myName) ||

On thelast line we have a print() function again. This time, we use the plus operator
(+) to concatenate the string 'It is good to meet you, ' and the string stored in
the myName variable, which is the name that our user input into the program. This is how
we get the program to greet us by name.

Ending the Program

Once the program executes the last line, it stops. At this point it hasnatea or
exited and all of the variables are forgotten by the computer, including the string we stored
in myName. If you try running the program again with a different name, like Carolyn, it
will think that's your name.

Hello world!

What is your name?

Carolyn

It is good to meet you, Carolyn

Remember, the computer only does exactly what you program it to do. In this, our first
program, it is programmed to ask you for your name, let you type in a string, and then say
hello and display the string you typed.

But computers are dumb. The program doesn't care if you type in your name, someone
else's name, or just something dumb. You can type in anything you want and the computer
will treat it the same wa

25

Hello world!
What is your name?

poop
It is good to meet you, poop

Variable Names

The computer doesn't care what you hame your variables, but you should. Giving
variables names that reflect what type of data they contain makes it easier to understand
what a program does. Insteadnaime, we could have called this variable
abrahamLincoln or nAmME. The computer will run the program the same (as long as you
consistently use abrahamLincoln or nAmME).

Variable names (as well as everything else in Python) are case-sensitive. Case-
sensitive means the same variable name in a different case is considered to be an entirely
separate variable name. So spa®PAM, Spam, and sPAM are considered to be four
different variables in Python. They each can contain their own separate values.

It's a bad idea to have differently-cased variables in your program. If you stored your
first name in the variable name and your last name in the variable NAME, it would be very
confusing when you read your code weeks after you first wrote itm&nte mean first and
NAME mean last, or the other way around?

If you accidentally switch the name and NAME variables, then your program will still
run (that is, it won't have any syntax errors) but it will run incorrectly. This type of flaw in
your code is called a bugdt is very common to accidentally make bugs in your programs
while you write them. This is why it is important that the variable names you choose make
sense.

It also helps to capitalize variable names if they include more than one word. If you store
a string of what you had for breakfast in a variable, the variable name
whatlHadForBreakfastThisMorning is much easier to read than
whatihadforbreakfastthismorning. This is a convention (thatis, an optional
but standard way of doing things) in Python programming. (Although even better would be
something simple, like todaysBreakfast. Capitalizing the first letter of each word in
variable names makes the program more readable.

Summary

Now that we have learned how to deal with text, we can start making programs that the
user can run and interact with. This is important because text is the main way the user and
the computer will communicate with each other. The player will enter text to the program
through the keyboard with the input() function. And the computer will display text on

26

3 - Strings
the screen when ttprint() function is executec

Strings are just a different data type that we can use in our programs. We carntuse the
opemtor to concatenate strings together. Usingttloperator to concatenate two strings
together to form a new string is just like using the + operator to add two integers to form a
new integer (the sum).

In the next chapter, we will learn more about variables so that our program will
remember the text and numbers that the player enters into the program. Once we have
learned how to use text, numbers, and variables, we will be ready creating game

27

Chapter l

Guess the Number

Topics Covered In This Chapter:

import sta tements

Modules

Arguments

while statements

Conditions

Blocks

Booleans

Comparison operators

The difference between = and ==
if statements

The break keyword.

The str() and int() functions.
The random.randint() function.

The "Guess the Number" Game

We are going to make a "Guess the Number" game. In this game, the computer will think
of a random number from 1 to 20, and ask you to guess the number. You only get six
guesses, but the computer will tell you if your guess is too high or too low. If you guess the

number within six tries, you win.

This is a good game for you to start with because it uses random numbers, loops, and
input from the user in a fairly short program. As you write this game, you will learn how to

conver values to different data types (and why you would need this).

28

4 - Guess the Number
Because this program is a game, we'll call the useslélyer , but the word "user”
would becorrect too.

Sample Run of "Guess the Number"

Here is what our game will look like to the player when the program is run. The text that
the player types in is in bold

Hello! What is your name?

Al bert

Well, Albert, | am thinking of a number between 1
and 20.

Take a guess.

10

Your guess is too high.

Take a guess.

2

Your guess is too low.

Take a guess.

4

Good job, Albert! You guessed my number in 3
guesses!

Enter this code exactly as it appears here, and then save it by clicking on tinerile
and then Save AsGive it a file name likguess.py then run it by pressing the F5 key. Don't
worry if you don't understand the code now, I'll explain it step by step.

Guess the Number's Source Code

Here is the source code for our Guess the Number game. When you enter this code into
the file editor, be sure to pay attention to the spacing at the front of some of the lines. Some
lines have four or eight spaces in front of them. After you have typed in the code, save the
file as guess.py You can run the program from the file editor by pressing F5. If you see an
error message, check that you have typed the program in exactly as written.

If you don't want to type all this code, you can download it from this book's website at
the URL http://inventwithpython.com/chapter4.

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have

29

guess.py

This code can be downloaded from http://inventwithpython.com/guess.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # This is a guess the number game.
2. import random
3.
4. guessesTaken =0
5.
6. print('Hello! What is your name?")
7. myName = input()
8.
9. number = random.randint(1, 20)
10. print(Well, ' + myName + ', | am thinking of a number

between 1 and 20.")

12. while guessesTaken < 6:

13. print('Take a guess.") # There are four spaces in
front of print.

14. guess = input()

15. guess = int(guess)

16.

17. guessesTaken = guessesTaken + 1

18.

19. if guess < number:

20. print("Your guess is too low.") # There are eight
spaces in front of print.

21.

22. if guess > number:

23. print("Your guess is too high.")

24,

25. if guess == number:

26. break

27.

28. if guess == number:

29. guessesTaken = str(guessesTaken)

30. print('Good job, ' + myName + 'l You guessed my
number in ' + guessesTaken + ' guesses!’)

31.

32. if guess != number:

33. number = str(number)

34. print('Nope. The number | was thinking of was ' +
number)

Even though we are entering our source code into a new file editor window, we can
return to the shell to enter individual instructions in order to see what they do. The
interactive shell is very good for experimenting with different instructions when we are not
running a program. You can return to the interactive shell by clicking on its window or on
its taskbar button. In Windows or Mac OS X, the taskbar or dock is on the bottom of the
screen. On Linux the taskbar may be located along the top screer

30

4 - Guess the Number

If the program doesn't seem to work after you've typed it, (to see if you have type
the code exactly as it appears in this book. You can also copy and paste your code to the
online "diff" tool at http://inventwithpython.com/diff. The diff tool will show you how your
code is different from the source code in this book. In the file editor, press Ctrl-A to "Select
All" the text you've typed, then press Ctrl-C to copy the text to the clipboard. Then, paste
this text by clicking in the diff tool's text field on the website and click the "Compare”
button. The website will show you any differences between your code and the code in this
book.

There is a diff tool for each program in this book on the http://inventwithpython.com
website. A video tutorial of how to use the diff tool is available from this book's website at
http://inventwithpython.com/videos/.

The | nport Statement

Let's look at each line of code in turn to see how this program works.

|| 1. # This is a guess the number game. ||

Thisline is a comment. Comments were introduced in our Hello World program in
Chapter 3. Remember that Python will ignore everything after the # sign. This just reminds
us what this program does.

|| 2. import random ||

Thisis animport statement . Statements are not functions (notice that neither import
nor random has parentheses after its name). Remember, statements are instructions that
perform some action but do not evaluate to a value. You have already seen statements:
assignment statements store a value into a variable (but the statement does not evaluate to
anything).

While Python includes many built-in functions, some functions exist in separate
programs called modules. Moduleare Python programs that contain additional functions.
We use the functions of these modules by bringing them into our programs with the
import statement. In this case, we're importing the module random.

The import statement is made up of the import keyword followed by the module
name. Together, the keyword and module name make up the statement. Line 2 then is an
import statement that imports the module named randonvhich contains several
functions related to random numbers. (We'll use one of these functions later to have the
computer come up with a random number for us to guess.)

|| 4. guessesTaken =0 ||

31

This line creates a new varia namecguessesTaken . We'll store the number
guesses the player makes in this variable. Since the player hasn't made any guesses so far,
we gtore the integer O here.

Lines 6 and 7 are the same as the lines in the Hello World program that we saw in

Chapter 3. Programmers often reuse code from their other programs when they need the
program to do something that they've already coded before.

6. print('Hello! What is your name?")
7. myName = input()

Line 6 is a function call to the print() function. Remember that a function is like a
mini-program that our program runs, and when our program calls a function it runs this
mini-program. The code inside tpent() function displays the string you passed it
inside the parentheses on the screen.

When these two lines finish executing, the string that is the player's name will be stored
in the myName variable. (Remember, the string might not really be the player's name. It's
just whatever string the player typed in. Computers are dumb and just follow their
programs no matter what.)

The random r andi nt () Function

|| 9. number = random.randint(1, 20) ||

In Line 9 we call a new function named randint(), and then store the return value in
a variable named number. Remember that function calls are expressions because they
evaluate to a value. We call this value the function call's return value.

Because the randint() function is provided by the random module, we precede it
with random. (don't forget the period!) to tell our program that the function randint()
is in the random module.

The randint() function will return a random integer between (and including) the two
integers we give it. Here, we give it the integers 1 and 20 between the parentheses that
follow the function name (separated by a comma). The random integeartbatt()
returns is stored in a variable named numkahis is the secret number the player is trying
to guess.

Just for a moment, go back to the interactive shell and enter import randam
import the random module. Then enter random.randint(1, 20) to see what the
function call evaluates to. It should return an integer between 1 and 20. Now enter the
same code again and the function will probably return a different integer. This

32

4 - Guess the Number

because each time trandint() function is called, it returns some random num
just like when you roll dice you will get a random number each time.

>>> import random

>>> random.randint(1, 20)
i§> random.randint(1, 20)
i§> random.randint(1, 20)
§>> random.randint(1, 20)
i§> random.randint(1, 20)
-

Whenever we want to add randomness to our games, we can use the randint()
function. And we use randomness in most games. (Think of how many board games use

dice.)

You can also try out different ranges of numbers by changing the arguments. For
example, enter random.randint(1, 4) to only get integers between 1 afd

(including both 1 and 4). Or tryandom.randint(1000, 2000)

to get integers

between 1000 and 2000. Here is an example of calling the random.randint()
function and seeing what values it returns. The results you get when you call the
random.randint() function will probably be different (it is random, after all).

>>> random.randint(1, 4)

3

>>> random.randint(1, 4)

4

>>> random.randint(1000, 2000)

1294

>>> random.randint(1000, 2000)
1585

>>>

We can change the game's code slightly to make the game behave differently. Try

changing line 9 and 10 from this:

9. number = random.randint(1, 20)
10. print('Well, ' + name + ', | am thinking of a number
between 1 and 20.)

33

into these line:

9. number = random.randint(1, 100)
10. print(Well, ' + name + ', | am thinking of a number
between 1 and 100.)

And now the computer will think of an integer between 1 and.10Banging line 9 will
change the range of the random number, but remember to change line 10 so that the game
also tells the player the new range instead of the old one.

Calling Functions that are Inside Modules

By the way, be sure to enter random.randint(1, 20) and notj ug randint(1,
20), or the computer will not know to look in the randonmodule for the randint()
function and you'll get an error like this:

>>> randint(1, 20)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'randint' is not defined
>>>

Remember, your program needs to run import randombefore it can call the
random.randint() function. This is why import statements usually go at the
beginning of the program.

Passing Arguments to Functions

The integer values between the parentheses in the random.randint(1, 20)
function call are called arguments. Argumentre the values that are passed to a function
when the function is called. Arguments tell the function how to behave. Just like the
player's input changes how our program behaves, arguments are inputs for functions.

Some functions require that you pass them values when you call them. For example, look
at these function calls:

input()
print('Hello")
random.randint(1, 20)

Theinput() function has no arguments but theprint() function call has one and
the randint(function call has two. When we have more than one argument, we st

34

4 - Guess the Number
eacl with commas, as you can see in this example. Programmers say that the a
are delimited (tha is, separated) by commas. This is how the computer knows where one
value ends and another begins.

If you pass too many or too few arguments in a function call, Python will display an
error message, as you can see below. In this example, we first called randint() with
only one argument (too few), and then we called randint() with three arguments (too
many).

>>> random.randint(1)
Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>
random.randint(1)

TypeError: randint() takes exactly 3 positional
arguments (2 given)
>>> random.randint(1, 2, 3)

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>
random.randint(1, 2, 3)
TypeError: randint() takes exactly 3 positional
arguments (4 given)
>>>

Notice that the error message says we passed 2 and 4 arguments instead of 1 and 3. This
is because Python always passes an extra, invisible argument. This argument is beyond the
scope of this book, and you don't have to worry about it.

Welcoming the Player

Lines 10 and 12 greets the player and tells them about the game, and then starts letting
the player guess the secret number. Line 10 is fairly simple, but line 12 introduces a useful
concept called a loop.

10. print(Well, ' + myName + ', | am thinking of a number
bet ween 1 and 20.")

In Line 10 the print() function welcomes the player by name, and tells them that the
computer is thinking of a random number.

But wait - didn't | say that the print() function takes only one string? It may look like
there's more than one string there. But look at the line carefully. The plus signs concatenate
the three strings to evaluate down to one string, and that is the one stipnigiti)e
function prints. It might look like the commas are separating the strings, but if you look
closely you see that the commas inside the quotes, and part of the stri themselve:

35

Loops

Line 12 has something called a while statement, which indicates the beginning of a
while loop. Loops are parts of code that are executed over and over again. But before we
can learn about while loops, we need to learn a few other concepts first. Those concepts
are blocks, booleans, comparison operators, conditions, and finalyhileestatement.

Blocks

A block is one or more lines of code grouped together with the same minimum amount
of indentation. You can tell where a block begins and ends by looking at the line's

indentation (that is, the number of spaces in front of the line).

A block begins when a line is indented by four spaces. Any following line that is also
indented by four spaces is part of the block. A block within a block begins when a line is
indented with another four spaces (for a total of eight spaces in front of the line). The block
ends when there is a line of code with the same indentation before the block started.

Below is a diagram of the code with the blocks outlined and numbered. The spaces have

black squares filled in to make them easier to count.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

while guessesTaken < 6:
ssseprint('Take a guess.')
ssssguess = input()

sssaguess = int(guess)
ssssguessesTaken = guessesTaken + 1
seseif guess < number: (::)
ssesseeeprint('Your guess is too low."')

«eeeif guess > number:
sssssssaprint('Your guess is too high."')

For example, look at the code above. The spaces have been replaced with dark squares to
make them easier to count. Line 12 has an indentation of zero spaces and is not inside any
block. Line 13 has an indentation of four spaces. Since this indentation is larger than the
previous line's indentation, we can tell that a new block has started. Lines 14, 15, 17 and 19
also have four spaces for indentation. Both of these lines have the same amount of
indentation as the previous line, so we know they are in the same block. (We do not count

Figure 4-1: Blocks and their indentation. The black dots represent spaces.

blank lines when we look for indentatic

36

4 - Guess the Number
Line 2(C has an indentation of eight spaces. Eight spaces is more than four spac
know a new block has started. This is a block that is inside of another block.

Line 22 ony has four spaces. The line before line 22 had a larger number of spaces.
Because the indentation has decreased, we know that block has ended. Line 22 is in the
same block as the other lines with four spaces.

Line 23 increases the indentation to eight spaces, so again a new block has started.

To recap, line 12 is not in any block. Lines 13 to 23 all in one block (marked with the
circled 1). Line 20 is in a block in a block (marked with a circled 2). And line 23 is the only
line in another block in a block (marked with a circled 3).

When you type code into IDLE, each letter is the same width. You can count the number
of letters above or below the line to see how many spaces you have put in front of that line
of code.

In this figure, the lines of code inside box 1 are all in the same block, and blocks 2 and 3
are inside block 1. Block 1 is indented with at least four spaces from the left margin, and
blocks 2 and 3 are indented eight spaces from the left margin. A block can contain just one
line. Notice that blocks 2 and 3 are only one line each.

The Boolean Data Type

The Boolean data type has only two valuiste or False. These values are case-
sensitive and they are not string values; in other words, you douhet ' quote character
around them. We will use Boolean values with comparison operators to form conditions.
(See below.)

Comparison Operators

In line 12 of our program, the line of code containing the while statement:

|| 12. while guessesTaken < 6: ||

The epression that follows the while keyword guessesTaken < 6) contains two
values (the value in the variable guessesTakenand the integer value 6) connected by
an operator (the < sign, the "less than" sign). The < sign is called a comparison
operator .

The comparison operator is used to compare two values and evaluadiei¢ocs
False Boolean value. A list of all the comparison operators is in Table 4-1.

37

Table «~1. Compariso operators

Operator Sign Operator Name

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal ffo
== Equal to

I= Not equal to

Conditions

A condition is an expression that combines two values with a comparison operator
(such as <or >) and evaluates to a Boolean value. A condition is just another name for an
expression that evaluates to True or False. You'll find a list of other comparison
operators in Table 4-1.

Conditions always evaluate to a Boolean value-eitingee or False. For example, the
condition in our code, guessesTaken <6 asks "is the value stored in
guessesTaken less than the number 6?" If so, then the condition evaluatesrice. If
not, the condition evaluates to False

In the case of our Guess the Number program, in line 4 we stored the value 0 in
guessesTaken. Because 0 is less than 6, this condition evaluates to the Boolean value
of True. Remember, a condition is just a name for an expression that uses comparison
operators such as < or !=.

Experiment with Booleans, Comparison Operators,
and Conditions

Enter the following expressions in the interactive shell to see their Boolean results:

>>>0<6
True
>>>6<0
False
>>>50< 10
False
>>>10< 11
True
>>>10<10

38

) 4 - Guess the Number
i False ’

The ®ndition 0 < 6 returns the Boolean valueTrue because the number 0 is less than
the numbeb. But because 6 is not less thnthe condition 6 < 0 evaluates toFalse.
50 is not less tharl0, so50 < 10is False. 10 is less than 11, so10< 11 is True.

But what abouflO < 10? Why does it evaluate to False? It is False because the
numberlO is not smaller than the numb®0. They are exactly the same size. If a girl
named Alice was the same height as a boy named Bob, you wouldn't say that Alice is taller
than Bob or that Alice is shorter than Bob. Both of those statements would be false.

Try entering some conditions into the shell to see how these comparison operators work:

>>>10==10

True

>>>10==11

False

>>>11==10

False

>>>101=10

False

>>>101=11

True

>>> 'Hello' == 'Hello'
True

>>> 'Hello' == 'Good bye'
False

>>> 'Hello' == '"HELLO'
False

>>>'Good bye' I= "Hello’
True

Notice the difference between the assignment operaja@n(d the "equal to" comparison
operator £€=). The equal%) sign is used to assign a value to a variable, and the equal to
(==) sign is used in expressions to see whether two values are equal. It's easy to
accidentally use one when you meant to use the other, so be careful of what you type in.

Two values that are different data types alWays be not equal to each other. For
example, try entering the following into the interactive shell:

| >>> 42 == "Hello'
| False
i >>> 42 |="Hello'

39

i True

Lo oping with While Statements

Thewhile statement marks the beginning of a loop. Sometimes in our programs, we
want the program to do something over and over again. When the execution reaches a
while statement, it evaluates the condition next to the while keyword. If the condition
evaluates tdrue, the execution moves inside the while-block. (In our program, the while-
block begins on line 13.) If the condition evaluateBdtse, the execution moves all the
way past the while-block. (In our program, the first line after the while-block is line 28.)

|| 12. while guessesTaken < 6: ||

i Fualse... it True...

12. while guessesTaken < 6:

13. print('Take a guess.')

14. guess = input() Y

15. guess = 1'nb{gues.s}'“9'::I inside +he
16. loop-block +0 here.
17. guessesTaken = guessesTaken + 1

18.

19. 1T guess < number:

20. print('Your guess 1is too low.')
21.

22. if guess > number:

23. print('Your guess 1is too high.")

24.

25. 1f guess == number:
26. break

27.

28. 1f guess == number:

...go past +he Joop-block 0 here.

Figure 4-2: The while loop's condition.

Figure 4-2 shows how the execution flows depending on the condition. If the condition
evaluates tdrue (which it does the first time, because the value of guessesTaken is
0), execution will enter the while-block at line 13 and keep going down. Once the program
reaches the end of the while-block, instead of going down to the next line, it jumps back up
to the while statement's line (line 12). It then re-evaluates the condition, and if it is True

40

4 - Guess the Number
we enter the whi-block agair

This is how the loop works. As long as the condition is True, the program keeps
exealting the code inside the while-block repeatedly until we reach the end of the while-
block and the condition Balse. And, until guessesTaken is equal to or greater than

6, we will keep looping.

Think of the while statement as saying, "while this condition is true, keep looping
through the code in this block".

You can make this game harder or easier by changing the number of guesses the player
gets. All you have to do is change this line:

|| 12. while guessesTaken < 6: ||
into this line:
|| 12. while guessesTaken < 4. ||

...and nowthe player only gets four guesses instead of six guesses. By setting the
condition toguessesTaken <4 , we ensure that the code inside the loop only runs four
times instead of six. This makes the game much more difficult. To make the game easier,
set the condition to guessesTaken < 8 or guessesTaken < 10 , Which will cause
the loop to run a few more times than before and accept more guesses from the player.

Of course, if we removed line 17 altogether then the guessesTaken would never
increase and the condition would always be True. This would give the player an unlimited
number of guesses.

The Player Guesses

Lines 13 to 17 ask the player to guess what the secret number is and lets them enter their
guess. We store this guess in a variable, and then convert that string value into an integer
value.

13. print('Take a guess.") # There are four spaces in
fro nt of print.
14. guess = input()

The program now asks us for a guess. We type in our guess and that number is stored in
a variable nameduess.

41

Converting Strings to Integers with the i nt () Function

|| 15. guess = int(guess) ||

In line 15, we call a new function called int(). Theint() function takes one
argument. The input() function returned a string of text that player typed. But in our
program, we will want an integer, not a string. If the player enters 5 as their guess, the
input() function will return the string value '5' and not the integer value 5. Remember
that Python considers the string '5' and the integer 5 to be different values. So the int()
function will take the string value we give it and return the integer value form of it.

Let's experiment with the int() function in the interactive shell. Try typing the
following:

>>> int('42")
42

>>> int(42)
42

>>> int('hello’)

Traceback (most recent call last):

File "<pyshell#4>", line 1, in <module>
int(‘forty-two")
ValueError: invalid literal for int() with base
10: 'hello’

>>> int(‘forty-two")

Traceback (most recent call last):
File "<pyshell#5>", line 1, in <module>
int(‘"forty-two")
ValueError: invalid literal for int() with base
10: forty-two'
>>>int(' 42)
42
>>> 3 +int('2")
5

We can see that the int('42") call will return the integer value 42, and that int
(42) will do the same (though it is kind of pointless to convert an integer to an integer).
However, even though you can pass a string to the int() function, you cannot just pass
any string. For example, passihgllo' to int() (like we do in the int('hello’)
call) will result in an error. The string we passritf) must be made up of numbers.

The integer we pass to int() must also be numerical, rather than text, which is why
42

4 - Guess the Number
int(‘forty-two") also produces an error. That said,int() function is slightly

forgiving- if our string has spaces on either side, it will still run without error. This is why
theint(' 42) call works.

The 3 + int('2") line shows an expression that adds an integer 3 to the return value
of int('2") (which evaluatesto 2 as well). The expression evaluateSt® 2, which
then evaluates to 5. So even though we cannot add an integer and & strigg (
would show us an error), we can add an integer to a string that has been converted to an
integer.

Remember, back in our program on line 15 the guessiable originally held the string
value of what the player typed. We will overwrite the string value storgdaas with the
integer value returned by the int() function. This is because we will later compare the
player's guess with the random number the computer came up with. We can only compare
two integer values to see if one is greater (that is, higher) or less (that is, lower) than the
other. We cannot compare a string value with an integer value to see if one is greater or less
than the other, even if that string value is numeric sucsi.as

In our Guess the Number game, if the player types in something that is not a number,
then the function calht() will result in an error and the program will crash. In the other
games in this book, we will add some more code to check for error conditions like this and
give the player another chance to enter a correct response.

Notice that calling int(guess) does not change the value in theess variable. The
code int(guess) is an expression that evaluates to the integer value form of the string
stored in the guess variable. We must assign this return value to guess in order to change
the value in guess to an integer with this full liggess = int(guess)

Incrementing Variables

|| 17. guessesTaken = guessesTaken + 1 ||

Oncethe player has taken a guess, we want to increase the number of guesses that we
remember the player taking.

The first time that we enter the loop blogkiessesTaken has the value of 0. Python
will take this value and add 1 to it. 0 + 1 isl. Then Python will store the new valuelof
to guessesTaken .

Think of line 17 as meaning, "the guessesTaken variable should be one more than
what it already is".

When we add 1 to an integer value, programmers say they are incremefiimgalue
(because it is increasing by one). When we subtract one from a value, we are
decrementing the value (because it is decreasing by one). The next time the loop

43

loops around.guessesTaken will have the value ¢1 and will be incremented to ti
value 2.

Is the Player's Guess Too Low?

Lines 19 and 20 check if the number that the player guessed is less than the secret
randomnunber that the computer came up with. If so, then we want to tell the player that
their guess was too low by printing this message to the screen.

| f Statements

19. if guess < number:
20. print("Your guess is too low.") # There are
eight spaces in front of print.

Line 19 begins an if statement with the keyword, if. Next to the ifkeyword is the
condition. Line 20 starts a new block (you can tell because the indentation has increased
from line 19 to line 20.) The block that follows the if keyword is called an if-block. An
if statement is used if you only want a bit of code to execute if some condition is true.
Line 19 has an if statement with the condition guess < number. If the condition
evaluates to True then the code in the if-block is executed. If the condition is False,
then the code in the if-block is skipped.

Like thewhile statement, thif

statement also has a keyword, followed fizr T 10 -
by a ondition, andthen a block of cod | I |
See Figure 4-3 for a comparison of the . .y -

two datements. if condition

keyword

Theif statement works almost t
same way as a whilestatement, too. B
unlike the while-block, execution does

not jump back to the if statement at the fiz 2V F =i
end of the if-block. It just continues on I | | |
down to the next line. In other words, if Whil& condiﬂon

blocks won't loop.

keyword
If the condition isTrue , then all th

lines inside the iblock are executed. T Figure «3: if and while statement

only line inside this if-block on line 19 is

a print() function call.

44

4 - Guess the Number

If the integer the player enters is less than the random integer the computer thought up,
the pogram displays Your guess is too low . If the integer the player enters is
equal to or larger than the random integer (in which case, the condition next to the if
keyword would have been False), then this block would have been skipped over.

Is the Player's Guess Too High?

Lines 22 to 26 in our program check if the player's guess is either too big or exactly
equal b the secret number.

23. print("Your guess is too high.")

22. if guess > number: “

If the player's guess is larger than the random integer, we enter the if-block that follows
the if statement. Theprint() line tells the player that their guess is too big.

Leaving Loops Early with the br eak Statement

25. if guess == number:
26. break

This if statement's condition checks to see if the guess is equal to the random integer. If
it is, we enter line 26, the if-block that follows it.

The line inside the if-block is a breaktatement that tells the program to immediately
jump out of the while-block to the first line after the end of the while-block. (The break
statement does not bother re-checking the while loop's condition, it just breaks out
immediately.)

The break statement is just théreak keyword by itself, with no condition or colon
(the : sign).

If the player's guess is not equal to the random integer, we do not break out of the while-
block, we will reach the bottom of the while-block anyway. Once we reach the bottom of
the while-block, the program will loop back to the top and recheck the condition
(guessesTaken < 6). Remember after the guessesTaken = guessesTaken +
1 line of code executed, the new value of guessesTaken s Because 1 is less than 6,
we enter the loop again.

If the player keeps guessing too low or too high, the value of guessesTakeil
change t@®, then 3, then 4, then 5, theth If the player guessed the number correctly, the
condition in the if guess == number statement would b&rue, and we would have

45

executed thbreak statement. Otherwise, we kilooping. But wher
guessesTaken has the number 6 stored, thevhile s tatement's condition is False,
since 6 is not less thah Because the while statement's condition is Falsewe will not
enter the loop and instead jump to the end of the while-block.

The remaining lines of code run when the player has finished guessing (either because
the player guessed the correct number, or because the player ran out of guesses). The
reason the player exited the previous loop will determine if they win or lose the game, and
the program will display the appropriate message on the screen for either case.

Check if the Player Won

|| 28. if guess == number: ||

Unlike the code in line 25, this line has no indentation, which means the while-block has
ended and this is the first line outside the while-block. When we left the while block, we
did so either because the while statement's condition Wwatse (when the player runs
out of guesses) or if we executed the break statement (when the player guesses the
number correctly). With line 28, check again to see if the player guessed correctly. If so, we
enter the if-block that follows.

29. guessesTaken = str(guessesTaken)
30. print(Good job, ' + myName + 'l You guessed my
number in ' + guessesTaken + ' guesses!’)

Lines 29 and 30 are inside the if-block. They only execute if the condition in the if
statement on line 28 was Truéhat is, if the player correctly guessed the computer's
number).

In line 29 (which is similar to the guess = int(guess) code on line 15), we call
the new function str(), which returns the string form of an argument. We use this
function because we want to change the integer valgedassesTaken into its string
version because we can only use strings in calls to print().

Line 29 tells the player that they have won, and how many guesses it took them. Notice
in this line that we change the guessesTaken value into a string because we can only
add strings to other strings. If we were to try to add a string to an integer, the Python
interpreter would display an error.

Check if the Player Lost

|| 32. if guess != number: ||

46

4 - Guess the Number
In Line 32, we use tt comparison operat!=with theif statement's condition
mean "is not equal to." If the value of the player's guess is lower or higher than (and
therefore, not equal to) the number chosen by the computer, then this condition evaluates to
True, and we enter the block that follows this if statement on line 33.

Lines 33 and 34 are inside the if-block, and only execute if the condifiones

33. number = str(humber)
34. print('Nope. The number | was thinking of was ' +
number)

In this block, we tell the player what the number is because they failed to guess correctly.
But first we have to store the string versiomamber as the new value of number.

This line is also inside the if-block, and only executes if the condition was .TAtighis
point, we have reached the end of the code, and the program terminates.

Congratulations! We've just programmed our first real game!

Summary: What Exactly is Programming?

If someone asked you, "What exactly is programming anyway?" what could you say to
them? Programming is just the action of writing code for programs, that is, creating
programs that can be executed by a computer.

"But what exactly is a program?" When you see someone using a computer program (for
example, playing our Guess The Number game), all you see is some text appearing on the
screen. The program decides what exact text to show on the screen (which is called the
output), based on its instructions (that is, the program) and on the text that the player
typed on the keyboard (which is called thput). The program has very specific
instructions on what text to show the user. A prograsnjust a collection of instructions.

"What kind of instructions?" There are only a few different kinds of instructions, really.

Expressions, which are made up of values connected by operators. Expressions are all
evaluated down to a single value, like 2 + 2 evaluates4®r 'Hello' + ' ' +
'‘World' evaluates to 'Hello World'. Function calls are also part of expressions
because they evaluate to a single value themselves, and this value can be connected by
operators to other values. When expressions are next ifcatie while keywords, we
also call them conditions.

Assignment statements, which simply store values in variables so we can remember the
values later in our program.

if, while and break are flow control statements because they decide which
47

instructions are executed. The normal flow of execution program is to start at tt
top and execute each instruction going down one by one. But these flow control statements
can cause the flow to skip instructions, loop over instructions, or break out of loops.
Function calls also change the flow of execution by jumping to the start of a function.

The print() function, which displays text on the screen. Also, the input() function

can get text from the user through the keyboard. This is d&Deghronounced like the
letters, "eye-oh"), because it deals with the input and output of the program.

And that's it, just those four things. Of course, there are many details about those four
types of instructions. In this book you will learn about new data types and operators, new
flow control statements besides if, while andbreak, and several new functions. There
are also different types of I/0O (input from the mouse, and outputting sound and graphics
and pictures instead of just text.)

For the person using your programs, they really only care about that last type, 1/0. The
user types on the keyboard and then sees things on the screen or hears things from the
speakers. But for the computer to figure out what sights to show and what sounds to play, it
needs a program, and programs are just a bunch of instructions that you, the programmer,
have written.

A Web Page for Program Tracing

If you have access to the Internet and a web browser, you can go to this book's website at
http://inventwithpython.com/traces you will find a page that traces through each of the
programs in this book. By following along with the trace line by line, it might become more
clear what the Guess the Number program does. This website just shows a simulation of
whai happens when the program is run. No actual code is really being ex

48

4 - Guess the Number

) ozilla Firelox r:_]rE|E
e plt Pew Ny Qoolmarks Tods el
ﬁ i e Al ':. bt frremmb s hen comfb oceafous oo, il - IG_ J @ ~
= | bttty Sivestwit. .oces guess.htmil 3 -
[(Frewous [nent] |3 sepein | Current variable values
Source code:guess.py o
rigfame == 'Albart’
1. # This i= a quess the number goame. numher == 18
2. import random I
3.
4. guessesTaken = 0 Notes
5.
B. print 'Hellol What is your nama? e playar ipes In hair guess. Lat's 53y ha player Wpes
7. mytlame = raw _input(] inm12,
B. |
9. mumbar = rapdom.randint(l. 20)
10. print 'Well. + moviiame + ', I an og
thinking of a number between 1 and 20. Pr ram nultput
i1.
12. while guessesTaken { E: Hellol What 15 your name?
13. print "Take a guess.' # There are Alben
four spaces in frent of print. Well, Albert, | am thinking of & number batween 1 and 20
14. guese = raw_input() [aka & quase
15. guess = 1Rt (guess)
1G.
iz anpcea=Talen m auec=a=Tslkan + 1 e
Cone # 4 0

Figure 4-4: The tracing web page.

The kEft side of the web page shows the source code, and the highlighted line is the line
of code that is about to be executed. You execute this line and move to the next line by
clicking the "Next" button. You can also go back a step by clicking the "Previous" button,
or jump directly to a step by typing it in the white box and clicking the "Jump" button.

On the right side of the web page, there are three sections. The "Current variable values”
section shows you each variable that has been assigned a value, along with the value itself.
The "Notes" section will give you a hint about what is happening on the highlighted line.
The "Program output" section shows the output from the program, and the input that is sent
to the program. (This web page automatically enters text to the program when the program
asks.)

So go to each of these web pages and click the "Next" and "Previous" buttons to trace
through the program like we did above.

A video tutorial of how to use the online tracing tool is available from this book's
website ahttp://inventwithpython.com/videc.

49

Chapter 5

Jokes

Topics Covered In This Chapter:

e Usingprint()'s end keyword argument to skip newlines.
o Escape characters.
¢ Using single quotes and double quotes for strings.

Make the Most of print ()

Most of the games in this book will have simple text for input and output. The input is
typed by the user on the keyboard and entered to the computer. The output is the text
displayed on the screen. In Python, the print() function can be used for displaying
textual output on the screen. We've learned how the basics of using the print() function,
but there is more to learn about how strings and print() work in Python.

Sample Run of Jokes

What do you get when you cross a snowman with a vampire ?
Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock.

50

5 - Jokes
Who's there?

Int errupting cow.

Interrupting cow wh-MOO!

Joke's Source Code

Hereis the source code for our short jokes program. Type it into the file editor and save
it as jokes.py If you do not want to type this code in, you can also download the source
code from this book's website at the URL http://inventwithpython.com/chapter5.

Important Note! Be sure to run this program with Python 3, and not Python 2. The
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You can click on Help and then About IDLE to find out what version of Python you
have.

jokes.py
This code can be downloaded from http://inventwithpython.com/jokes.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com
1. print('What do you get when you cross a snowman with a
vampire?")
2. input()
3. print('Frostbite!")
4. print()
5. print('What do dentists call a astronaut\'s cavity?")
6. input()
7. print('A black hole!")
8. print()
9. print('’Knock knock.")
10. input()
11. print("Who's there?")
12. input()
13. print(Interrupting cow.")
14. input()
15. print(Interrupting cow wh', end=")
16. print(-MOQ!")

Don't worry if you don't understand everything in the program. Just save and run the
program. Remember, if your program has bugs in it, you can use the online diff tool at
http://inventwithpython.com/chapter5.

How the Code Works

Let's look at the code mc carefully
51

1. print('What do you get when you cross a snowman with a
vanpire?')

input()

print('Frostbite!")

4. print()

wnN

Here we have three print() function calls. Because we don't want to tell the player
what the joke's punch line is, we have a call to the input() function after the first print
(). The player can read the first line, press Enter, and then read the punch line.

The user can still type in a string and hit Enter, but because we aren't storing this string
in any variable, the program will just forget about it and move to the next line of code.

The lastprint() function call has no string argument. This tells the program to just

print a blank line. Blank lines can be useful to keep our text from being bunched up
together.

Escape Characters

print("What do dentists call a astronaut\'s cavity?")
i nput()

print(‘A black hole!")

print()

©No O

In the first print()above, you'll notice that we have a slash right before the single
quote (that is, the apostrophe). This backslash (\ is a backslash, / is a forward slash) tells us
that the letter right after it is an escape characterAn escape character helps us print out
letters that are hard to enter into the source code. There are several different escape
characters, but in our call to print() the escape character is the single quote.

We have to have the single quote escape character because otherwise the Python
interpreter would think that this quote meant the end of the string. But we want this quote
to be a part of the string. When we print this string, the backslash will not show up.

Some Other Escape Characters

What if you really want to display a backslash? This line of code would not work:

>>> print('He flew away in a green\teal
helicopter.")

Thatprint() function call would show up as:

52

5 - Jokes

He flew away in a green eal helicopter.

Thisis because the "t" in "teal" was seen as an escape character since it came after a
backslash. The escape character t simulates pushing the Tab key on your keyboard. Escape
characters are there so that strings can have characters that cannot be typed in.

Instead, try this line:

>>> print('He flew away in a green\\teal
helicopter.")

Hereis a list of escape characters in Python:

Table 5-1: Escape Characters

Escape Character What Is Actually Printed
\\ Badslash (\)
\' Single quote ()
\" Double quote (")
\n Newline
\t Tab

Quotes and Double Quotes

Strings don't always have to be in between single quotes in Python. You can also put
them in between double quotes. These two lines print the same thing:

>>> print("Hello world")
Hello world
>>> print("Hello world")
Hello world

But you @annot mix quotes. This line will give you an error if you try to use them:

>>> print('"Hello world")

SyntaxError: EOL while scanning single-quoted
string

>>>

53

I like to use single quotes because | ¢ have to hold down the shift key on 1
keyboard to type them. It's easier to type, and the computer doesn't care either way.

But remember, just like you have to use the escape character \' to have a single quote in a
string surrounded by single quotes, you need the escape character \" to have a double quote
in a string surrounded by double quotes. For example, look at these two lines:

>>> print('l asked to borrow Abe\'s car for a

week. He said, "Sure.™)

| asked to borrow Abe's car for a week. He said,
"Sure."

>>> print("He said, \"I can't believe you let him
borrow your car.\"")

He said, "l can't believe you let him borrow your

car."

Did you notice that in the single quote strings you do not need to escape double quotes,
and in the double quote strings you do not need to escape single quotes? The Python
interpreter is smart enough to know that if a string starts with one type of quote, the other
type of quote doesn't mean the string is ending.

The end Keyword Argument

9. print('’Knock knock.")

10. input()

11. print("Who's there?")

12. input()

13. print(Interrupting cow.")

14. input()

15. print(Interrupting cow wh', end=")
16. print(-MOOQO!")

Did you notice the second parameter on line @dre()? Normally, print() adds
a newline character to the end of the string it prints. (This is why a pfarnk)
function will just print a newline.) But the print() function can optionally have a second
parameter (which has the name end.) The blank string we are passing is called a keyword
argument . The end parameter has a specific name, and to pass an argument to this
specific parameter we need to use the end= syntax.

Notice that when you type the keyword and the keyword argument, you use only one =
sign. It is end=", and not end==".

By passing a blank string for the end we tell the print() function to not add a newline
at the end of the string, but instead add a blank string. This is why '-MOQ!" appears next

54

5 - Jokes
to the previous line, inste of on its own line. There was no newline printed aftel
'Interrupting cow wh' string.

Summ ary

This chapter briefly covered how software (including our Python programs) runs on your
computer. Python is a higher-level programming language that the Python interpreter (that
is, the Python software you have downloaded and installed) converts into machine
language. Machine language are the 1s and Os that make up instructions that your computer
can understand and process.

The rest of this chapter explores the different ways you can use the print() function.
Escape characters are used for characters that are difficult or impossible to type into the
code with the keyboard. Escape characters are typed into strings beginning with a backslash
\ followed by a single letter for the escape character. For example, \n would print out a
newline. To display a backslash, you would use the escape character \\.

The print() function automatically appends a newline character to the end of the
string we pass it to be displayed on the screen. Most of the time, this is a helpful shortcut.
But sometimes we don't want a newline character at the end. To change this, we pass the
end keyword argument with a blank string. For example, to print "spam" to the screen
without a newline character, you would call print('spam’, end=")

By adding this level of control to the text we display on the screen, we have much more
flexible ways to disple text on the screen the exact way we wat

55

Chapter
Dragon Realm

Topics Covered In This Chapter:

e The time moduk.

e The time.sleep() function.

e The return keyword.

o Creating our own functions with the def keyword.
The and and or and not boolean operators.
Truth tables

Variable scope (Global and Local)

Parameters and Arguments

Flow charts

Introducing Functions

We've already used two functions in our previous programs: input() apdnt().
In our previous programs, we have called these functions to execute the code that is inside
these functions. In this chapter, we will write our own functions for our programs to call. A
function is like a mini-program that is inside of our program. Many times in a program we
want to run the exact same code multiple times. Instead of typing out this code several
times, we can put that code inside a function and call the function several times. This has
the added benefit that if we make a mistake, we only have one place in the code to change
it.

The game we will create to introduce functions is called "Dragon Realm", and lets the
player make a guess between two caves which randoml treasure or certain doo

56

6 - Dragon Realm

How to Play "Dragon Realm"

In this game, the player is in a land full of dragons. The dragons all live in caves with
their large piles of collected treasure. Some dragons are friendly, and will share their
treasure with you. Other dragons are greedy and hungry, and will eat anyone who enters
their cave. The player is in front of two caves, one with a friendly dragon and the other with
a hungry dragon. The player is given a choice between the two.

Open a new file editor window by clicking on thde menu, then click ohNew
Window. In the blank window that appears type in the source code and save the source
code as dragon.pyThen run the program by pressing F5.

Sample Run of Dragon Realm

You are in a land full of dragons. In front of you,

you see two caves. In one cave, the dragon is friendly
and will share his treasure with you. The other dragon
is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)

1

You a pproach the cave...

It is dark and spooky...

A large dragon jumps out in front of you! He opens his jaws
and...

Gobbles you down in one bite!
Do you want to play again? (yes or no)
no

Dragon Realm's Source Code

Hereis the source code for the Dragon Realm game. Typing in the source code is a great
way to get used to the code. But if you don't want to do all this typing, you can download
the source code from this book's website at the URL http://inventwithpython.com/chapter6.
There are instructions on the website that will tell you how to download and open the
source code file. You can use the online diff tool on the website to check for any mistakes
in your code.

One thing to know as you read through the code below: The blocks that follow the def
lines define a function, but the code in that block does not run until the function is called.
The code does not execute each line in this program in top down order. This will be
explained in more detail later in this chag

57

Important Note! Be sure to run this program with Pytl 3, and not Python 2. Ti
programs in this book use Python 3, and you'll get errors if you try to run them with Python
2. You @n click on Help and then About IDLE to find out what version of Python you
have.

dragon.py
This code can be downloaded from http://inventwithpython.com/dragon.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com
1. import random
2. import time
3.
4. def displaylntro():
5 print('"You are on a planet full of dragons. In front
of you,")
print('you see two caves. In one cave, the dragon is
friendly")
7. print('and will share his treasure with you. The
other dragon’)

o

8. print(lis greedy and hungry, and will eat you on
sight.")
9. print()
10.
11. def chooseCave():
12. cave="
13. while cave !="1"and cave !="2"
14, print("Which cave will you go into? (1 or 2)")
15. cave = input()
16.
17. return cave
18.

19. def checkCave(chosenCave):

20. print("You approach the cave...")

21. time.sleep(2)

22. print(lt is dark and spooky...")

23. time.sleep(2)

24. print('A large dragon jumps out in front of you! He
opens his jaws and...")

25. print()

26. time.sleep(2)

27.

28. friendlyCave = random.randint(1, 2)

29.

30. if chosenCave == str(friendlyCave):

31. print('Gives you his treasure!’)

32. else:

33. print('Gobbles you down in one bite!")
34.

35. playAgain = 'yes'

36. while playAgain =="yes' or playAgain =="y"
37.

38. displayintro()

58

6 - Dragon Realm

39.

40. caveNumber = chooseCave()
41.

42. checkCave(caveNumber)
43.

44. print('Do you want to play again? (yes or no)")
45. playAgain = input()

How the Code Works

Let'slook at the source code in more detail.

1. import random
2. import time

Here we have two import statements. We import tmeandom modulelike we did in the
Guess the Number game. In Dragon Realm, we will also want some time-related functions
that thetime module includes, so we will import that as well.

Defining the di spl ayl ntro() Function

4. def displayIntro():

5. print("You are on a planet full of dragons. In front
of you,")

6. print('you see two caves. In one cave, the dragon is
friendly")

7. print('and will share his treasure with you. The other
dragon’)

8. print('is greedy and hungry, and will eat you on
sight.")

9. print()

Figure 6-1 shows a new type of def keyword parentheses
staement, thalef statement . The l
def statement is made up of the def
keyword, followed by a function name = chooseCave () :

with parentheses, and then a colon
(the: sign). There is a block after the _
statement called the def-block. function name colon

Parts of a def statement

Figure 6-1: Parts of a def statement.

59

def Statements

The def statement isn't a call to a function nawfisdlayintro(). | ngead, the def
statement means we are creating, or definiagnew function that we can call later in our
program. After we definghis function, we can call it the same way we call other functions.
When we callthis function, the code inside the def-block will be executed.

We also say we define variables when we create them with an assignment statement. The
code spam =42 defines the variable spam.

Remember, the def statement doesn't execute the code right now, it only defines what
code is executed when we call the displayIntro() function later in the program.
When the program's execution reaches a def statement, it skips down to the end of the def-
block. We will jump back to the top of the def-block when the displayintro()
function is called. It will then execute all the print() statements inside the def-block. So

we call this function when we want to display the "You are on a planet full of dragons..."
introduction to the user.

When we call thelisplayIntro() function, the program's execution jumps to the
start of the function on line 5. When the function's block ends, the program's execution
returns to the line that called the function.

We will explain all of the functions that this program will use before we explain the main
part of the program. It may be a bit confusing to learn the program out of the order that it
executes. But just keep in mind that when we define the functions they just silently sit
around waiting to be called into action.

Defining the chooseCave() Function

|| 11. def chooseCave(): ||

Here we are defining another function called chooseCave. The code in this function
will prompt the user to select which cave they should go into.

13. while cave !="1" and cave !="2"

12. cave =" “

Inside the chooseCave() function, we create a new variable calledve and store a
blank string in it. Then we will start a whileloop. This while statement's condition
contains a new operator we haven't seen before called and. Just likertheare
mathematical operators, and == or != are comparison operators, the and operator is a
booleal operatol

60

6 - Dragon Realm

Boolean Operators

Boolean logic deals with things that are either true or false. This is why the boolean data
type ony has two values, True and False. Boolean statements are always either true or
false. If the statement is not true, then it is false. And if the statement is not false, then it is
true.

Boolean operators compare two different boolean values and evaluate to a single boolean
value. Do you remember how the * operator will combine two integer values and produce a
new integer value (the product of the two original integers)? And do you also remember
how the + operator can combine two strings and produce a new string value (the
concatenation of the two original strings)? The and boolean operator combines two
boolean values to produce a new boolean value. Here's how the and operator works.

Think of the sentence, "Cats have whiskers and dogs have tails." This sentence is true,
because "cats have whiskers" is true and "dogs have tails" is also true.

But the sentence, "Cats have whiskers and dogs have wings." would be false. Even
though "cats have whiskers" is true, dogs do not have wings, so "dogs have wings" is false.
The entire sentence is only true if both parts are true because the two parts are connected by
the word "and." If one or both parts are false, then the entire sentence is false.

The and operator in Python works this way too. If the boolean values on both sides of
the and keyword are True, then the expression with the and operator evaluates to True.

If either of the boolean values are False, or both of the boolean values are False, then
the expression evaluates to False

Evaluating an Expression That Contains Boolean Operator S

So let's look at line 13 again:

|| 13. while cave !="1" and cave != 2" ||

This condition is made up of two expressions connected by thebmadean operator.
We first evaluate these expressions to get their boolean (that is, True or False) values.
Then we evaluate the boolean values with the and operator.

The string value stored in cave when we first execute this while statement is the blank
string, ". The blank string does not equal the striflj, so the left side evaluates to
True. The blank string also does not equal the string '2', so the right side evaluates to
True. So the condition then turns into True and True. Because both boolean values
are True, the condition finally evaluates ftrue. And because the while statement's
condition is True, the program execution enters the while-block.

61

This is all done by the Python interpreter, but important to understand how t
interpreter does this. This picture shows the steps of how the interpreter evaluates the
condtion (if the value of cave is the blank string):

while cave !="'1"' and cave !='2"

&

while " 1="1" and cave |="2":

I

while True and cave !='2";

$

while True and " 1= '2"

$

while True and True:

+

while True:

Experimenting with the and and or Operators

Try typing the following into the interactive shell:

>>> True and True
True

>>> True and False
False

>>> False and True
False

>>> False and False
False

There are two other boolean operators. The next one wrtbperator. The or operator
works similar to the and, except it will evaluateTtaie if either of the two boolean values
are True. The only time the or operator evaluates to False is if both of the boolean
values are False.

The sentence "Cats have whiskers or dogs have wings." is true. Even though dogs don't
have wings, when we say "or" we mean that one of the two parts is true. The sentence "Cats
have whiskers or dogs have tails." is also true. (Most of the time when we say "this OR
that”, we mean one thing is true but the other thing is false. In programming, "or" means
that either of the things are true, or maybe both ¢ things are true

62

6 - Dragon Realm

Try typing the following into the interacti shell

>>> True or True
True

>>> True or False
True

>>> False or True
True

>>> False or False
False

Experimenting with the not Operator

The third boolean operator is not. The not op#ar is different from every other
operator we've seen before, because it only works on one value, not two. There is only
value on the right side of the not keyword, and none on the left. The not operator will
evaluate to True as False and will evaluate False asTrue.

Try typing the following into the interactive shell:

>>> not True

False

>>> not False

True

>>> True not

SyntaxError: invalid syntax (<pyshell#0>, line 1)

Notice that if we put the boolean value on the left side of the opérator results in a
syntax error.

We can use both the and and not operators in a single expression. Try typing True
and not False into the shell:

>>> True and not False
True

Normally the expression True and False would evaluate to False. But the True
and not False expression evaluates toTrue. This is because not False evaluates to
True, which turns the expression inforue and True, which evaluates to True.

63

Truth Tables

If you ever forget how the boolean operators work, you can look at these charts, which
are called truth tables :

Table 6-1: The and operator's truth table.

A and B is Entirestatement
True and True is True
True and False is False
False and True is False
False and False is False

Table 6-2: The or operator's truth table.

A o B is Entiregtatement
True or True is True
True or False is True
False or True is True
False or False is False

Table 6-3: The not operator's truth table.

not A is Entire statement
not True is False
not False is True

Getting the Player's Input

15. cave = input()

14. print("Which cave will you go into? (1 or 2)") “

Here, the player is asked to enter which cave they chose to enter by typing in 1 or 2 and
hitting Enter. Whatever string the player typed will be storezhire. After this code is

executed, we jump back to the top of the whiktatement and recheck the condition.
Remember that the line was:

|| 13. while cave !="'1" and cave !='2": ||

If this condition evaluates fbrue, we will enter the while-block again and ask the
player for a cave number to enter. But if the player typed in 1 or 2, theavbevalue
will either be '1' or '2'. This causes the condition to evaluate téalse, and the

64

6 - Dragon Realm
program executic will continue on past thwhile loop.

The reason we have a loop here is because the player may have typed in 3 or 4 or
HELLO. Our program doesn't make sense of this, so if the player did not enter 1 or 2, then
the program loops back and asks the player again. In fact, the computer will patiently ask
the player for the cave number over and over again until the player types in 1 or 2. When
the player does that, the while-block's condition will be False, and we will jump down
past the while-block and continue with the program.

Return Values

|| 17. return cave ||

Thisis the return keyword, which only appears inside def-blocks. Remember how the
input() function returns the string value that the player typed in? Or how the randint
() function will return a random integer value? Our function will also return a value. It
returns the string that is stored in cave.

This means that if we had a line of code like spam = chooseCave(), the code
inside chooseCave() would be executed and the function call will evaluate to
chooseCave()'s return value. The return value will either be the strifg)' or the string
'2". (Our while loop guarantees that chooseCave() will only return eithetl' or
'2')

The return keyword is only found inside def-blocks. Once theturn statement is
executed, we immediately jump out of the def-block. (This is like how the break
statement will make us jump out of a while-block.) The program execution moves back to
the line that had called the function.

You can also use the return keyword by itself just to break out of the function, just
like the break keyword will break out of a while loop.

Variable Scope

Just like the values in our program's variables are forgotten after the program ends,
variables created inside the function are forgotten after the execution leaves the function.
Not only that, but when execution is inside the function, we cannot change the variables
outside of the function, or variables inside other functions. The variable's sisapés
range that variables can be modified in. The only variables that we can use inside a function
are the ones we create inside of the function (or the parameter variables, described later).
That is, the scope of the variable is inside in the function's block. The scope of variables
created outside of functions is outside of all functions in the program.

Not only that, but if we have a variable named spam created outside of a function, and
65

we create a variak namecspam inside of the function, the Python interpr: will
consider them to be two separate variables. That means we can change thesypaloe of
indde the function, and this will not change the spam variable that is outside of the
function. This is because these variables have different scopes, the global scope and the
local scope.

Global Scope and Local Scope

We have names for these scopes. The scope outside of all functions is calledbtie glo
scope . The scope inside of a function is called ltheal scope . The entire program has
only one global scope, and each function has a local scope of its own.

Variables defined in the global scope can be read outside and inside functions, but can
only be modified outside of all functions. Variables defined in a function's local scope can
only be read or modified inside that function.

Specifically, we can read the value of global variables from the local scope, but
attempting to change the value in a global variable from the local scope will leave the
global variable unchanged. What Python actually does is create a local variable with the
same name as the global variable. But Python will consider these to be two different
variables.

Look at this example to see what happens when you try to change a global variable from
inside a local scope. Remember that the code ifutilg/() function isn't run until the
funky() function is called. The comments explain what is going on:

This block doesn't run until funky() is called:
def funky():
We read the global variable's value:
print(spam) # 42

We create a local variable named "spam”

instead of changing the value of the global
variable "spam™:

spam = 99

The name "spam" now refers to the local
variable only for the rest of this

function:

print(spam) # 99

A global variable named "spam":
spam = 42

Call the funky() function:
funky()

66

6 - Dragon Realm

The global variable was not changed in funky():
| print(spam) # 42

It isimportant to know when a variable is defined because that is how we know the
variable's scope. A variable is defined the first time we use it in an assignment statement.
When the program first executes the line:

|| 12. cave =" ||

...the variableave is defined.

If we call thechooseCave() function twice, the value stored in the variable the first
time won't be remember the second time around. This is because when the execution left
the chooseCave() function (that is, left chooseCave() 's local scope), the cave
variable was forgotten and destroyed. But it will be defined again when we call the function
a second time because line 12 will be executed again.

The important thing to remember is that the value of a variable in the local scope is not
remembered in between function calls.

Defining the checkCave() Function

|| 19. def checkCave(chosenCave): ||

Now we ae defining yet another function namelteckCave(). Notice that we put the
text chosenCave in between the parentheses. The variable names in between the
parentheses are callpdrameters .

Remember, for some functions like for the str() or randint() , we would pass an
argument in between the parentheses:

>>> str(5)
I5l
>>> random.randint(1, 20)
14

When we call checkCave(), we will also pass one value to it as an argument. When
execution moves inside the checkCave()function, a new variable named chosenCave
will be assigned this value. This is how we pass variable values to functions since functions
cannot read variables outside of the function (that is, outside function's local scope

67

Parameters are local variables that get de when a function is called. The val
stored in the parameter is the argument that was passed in the function call.

Parameters

For example, here is a short program that demonstrates parameters. Imagine we had a
short program that looked like this:

def sayHello(name):
print(Hello, ' + name)

print('Say hello to Alice.")

fizzy ='Alice’

sayHello(fizzy)

print('Do not forget to say hello to Bob.")
sayHello('Bob’)

If we run this program, it would look like this:

Say hello to Alice.

Hello, Alice

Do not forget to say hello to Bob.
Hello, Bob

This program calls a function we have created, sayHello(and first passes the value
in the fizzy variable as an argument to it. (We stored the string 'Alice’ in fizzy.)
Later, the program calls the sayHello() function again, passing the string ‘Bob'as an
argument.

The value in théizzy variable and the string 'Bob' are arguments. The name
variable in sayHello() is a parameter. The difference between arguments and
parameters is that arguments are the values passed in a function call, and parameters are the
local variables that store the arguments. It might be easier to just remember that the thing in
between the parentheses in the def statement is an parameter, and the thing in between the
parentheses in the function call is an argument.

We could have just used the fizzy variable inside the sayHello() function instead
of using a parameter. (This is because the local scope can still see variables in the global
scope.) But then we would have to remember to assign the fizzy variable a string each
time before we call the sayHello() function. Parameters make our programs simpler.
Look at this code:

def sayHello():
68

6 - Dragon Realm

print(Hello, ' + fizzy)

print('Say hello to Alice.")

fizzy = 'Alice’

sayHello()

print('Do not forget to say hello to Bob.")
sayHello()

When we run this code, it looks like this:

Say hello to Alice.

Hello, Alice

Do not forget to say hello to Bob.
Hello, Alice

This program'ssayHello() function does not have a parameter, but uses the global
variable fizzy directly. Remember that you can read global variables inside of functions,
you just can't modify the value stored in the variable.

Without parameters, we have to remember to sdizig variable before calling
sayHello(). In this program, we forgot to do so, so the second time we called
sayHello() the value of fizzy was still ‘Alice’ . Using parameters makes function
calling simpler to do, especially when our programs are very big and have many functions.

Local Variables and Global Variables with the Same Name

dots.

print("Your new name is ' + myName)

|myNam]a = 'Albert’

spam(‘nyNamg)

print(Howdy, "+ myNanfe)]

If we run this program, it would look like this:

Hello, Albert
! Your new name is Waffles
69

| Howdy, Albert

This program defines a new variable callegiName and stores the string 'Albert' in
it. Then the program calls tlspam() function, passing the value in myName as an
argument. The execution moves to gpam() function. The parameter in spam() is also
namedmyName, and has the argument value assigned to it. Remember, the myName inside
the spam() function (the local scope) is considered a different variable thanytNeame
variable outside the function (the global scope).

The function then print$lello, Albert' , and then on the next line changes the
value inmyName tdWaffles'. Remember, this only changes the local myName
variable that is inside the function. The globgiName variable that is outside the function
still has the value 'Albert’ stored in it.

The function now prints out "Your new name is Waffles' , because the
myName variable in the local scope has chang8dfaffles'. The execution has
reached the end of the function, so it jumps back down to where the function call was. The
localmyName is destroyed and forgotten. The next line after that is print("Howdy, '
+ myName), which will display Howdy, Albert.

Remember, thenyName outside of functions (that is, in the global scope) still has the
value'Albert', not '‘Waffles'. This is because the myName in the global scope and
the myNamen spam() 's local scope are different variables, even though they have the
same name.

Where to Put Function Definitions

A function's definition (where we put tlief statement and the def-block) has to come
before you call the function. This is like how you must assign a value to a variable before
you can use the variable. If you put the function call before the function definition, you will
get an error. Look at this code:

sayGoodBye()

def sayGoodBye():
print('Good bye!")

If youtry to run it, Python will give you an error message that looks like this:

Traceback (most recent call last):
i File "C:\Python31\foo.py", line 1, in <module>
i sayGoodBye()

70

) . . 6 - Dragon Realm
i NameError: name 'sayGoodBye' is not defined ’

To fix this, put the function definition before the function call:

def sayGoodBye():
print('Good bye!")

sayGoodBye()

Displaying the Game Results

Back to the game's source code:

20. print("You approach the cave...")
21. time.sleep(2)

We display some text to the player, and then call the time.sleep()function.
Remember how in our call tandint(), the function randint() Is inside the
random module? In the Dragon Realm game, we also imported the time module. The
time module has a function calledleep() that will pause the program for a few
seconds. We pass the integer véluas an argument to the time.sleep() function to
tell it to pause for exactly 2 seconds.

22. print(lt is dark and spooky...")
23. time.sleep(2)

Here we print some more text and wait again for another 2 seconds. These short pauses
add suspense to the game, instead of displaying all the text all at once. In our jokes
program, we called thiaput() function to wait until the player pressed the Enter key.

Here, the player doesn't have to do anything at all except wait.

24. print('A large dragon jumps out in front of you! He
opens his jaws and...")

25. print()

26. time.sleep(2)

What happens ne» And how does the program decide what hapy

71

Deciding Which Cave has the Friendly = Dragon

|| 28. friendlyCave = random.randint(1, 2) ||

Now we are going to have the program randomly chose which cave had the friendly
dragon in it. Our call to the random.randint() function will return either the integer 1
or the integer 2, and store this value in a variable called friendlyCave.

30. if chosenCave == str(friendlyCave):
31. print('Gives you his treasure!")

Here we check if the integer of the cave we chdse('2") is equal to the cave
randomly selected to have the friendly dragon. But wait, the value in chosenCave was a
string (because input() returns strings) and the value ifiiendlyCave IS an integer
(because random.randint() returns integers). We can't compare strings and integers
with the == sign, because they will always be differélitdoes not equal 1).

Comparing values of different data types with the == operator will always evaluate to
False.

So we are passing friendlyCave to the str() function, which returns the string
value of friendlyCave.

What the condition in this if statement is really comparing is the string in
chosenCave and the string returned by thstr() function. We could have also had this
line instead:

if int(chosenCave) == friendlyCave:

Then the if statement's condition would compare the integer value returned bythe
() function to the integer value in friendlyCave. The return value of the int()
function is the integer form of the string storec¢hmsenCave.

If the if statement's condition evaluates to Truewe tell the player they have won the
treasure.

33. print('Gobbles you down in one bite!")

32. else: “

Line 32 has a new keyword. The else keyword always comes after the if-block. The
else-block that follows the else keyword executes if the condition in the if statement was

72

6 - Dragon Realm
False . Think of it as th program's way of saying, "If this condition is true then exe

the if-block or else execute the else-block."

Remember to put the colon (the : sign) after the else keyword.

The Colon:

You may have noticed that we always place a colon at the end etsg, while, and
def statements. The colon marks the end of the statement, and tells us that the next line
should be the beginning of a new block.

Where the Program Really Begins

|| 35. playAgain = 'yes' ||

Thisis the first line that is not a def statement or inside a def-block. This line is where
our program really begins. The previous def statements merely defined the functions, it
did not run the code inside of the functions. Programs must always define functions before
the function can be called. This is exactly like how variables must be defined with an
assignment statement before the variable can be used in the program.

|| 36. while playAgain =="yes' or playAgain =="y" ||

Here is the beginning of a while loop. We enter the loopplayAgain is equal to
either 'yes' or 'y'. The first time we come to thiswhile statement, we have just
assigned the string valuges' to the playAgain variable. That means this condition
will be True.

Calling the Functions in Our Program

|| 38. displayintro() ||

Here we call the displaylntro() function. This isn't a Python function, it is our
function that we defined earlier in our program. When this function is called, the program
execution jumps to the first line in thkesplaylintro() function on line 5. When all the
lines in the function are done, the execution jumps back down to the line after this one.

|| 40. caveNumber = chooseCave() ||

This line also calls a function that we created. Remember that the chooseCave()
73

function lets the player type in 1 cave they choose to go into. When the return cave
in this function executes, the program execution jumps back down here, and the local
valiable cave's value is the return value of this function. The return value is stored in a
new variable named caveNumber. Then the execution moves to the next line.

|| 42. checkCave(caveNumber) ||

This line calls our checkCave() function with the argument of caveNumber's value.
Not only does execution jump to line 20, but the value stored in caveNumber is copied to
the parameter chosenCaveinside the checkCave() function. This is the function that
will display eitherGives you his treasure!" or '‘Gobbles you down in
one bite!", depending on the cave the player chose to go in.

Asking the Player to Play Again

45. playAgain = input()

44. print('Do you want to play again? (yes or no)") “

After the game has been played, the player is asked if they would like to play again. The
variable playAgain stores the string that the user typed in. Then we reach the end of the
while-block, so the program rechecks the while statement's conditiaimie
playAgain =='yes' or playAgain ==y’

The difference is, now the value of playAgainis equal to whatever string the player
typed in. If the player typed in the strifygs' or 'y', then we would enter the loop
again at line 38.

If the player typed in 'no’ or 'n' or something silly like 'Abraham Lincoln’ :
then the while statement's condition would Healse, and we would go to the next line

after the while-block. But since there are no more lines after the while-block, the program
terminates.

But remember, the strinyES' is different from the string 'yes'. If the player typed
in the string 'YES', then the while statement's condition would evaluate to Falsand
the program would still terminate.

We've just completed our second game! In our Dragon Realm game, we used a lot of
what we learned in the "Guess the Number" game and picked up a few new tricks as well.
If you didn't understand some of the concepts in this program, then read the summary at the
end of this chapter, or go over each line of the source code again, or try changing the source
code and see how the program changes. In the next chapter we won't create a game, but a
computer program that will create secret codes out of ordinary messages and also decode
the secret code back to the original mes:

74

6 - Dragon Realm
We went through the soul code from top to bottom. If you would like to go through

source code in the order that the execution flows, then check out the online tracing web site
for this program at the URL http://inventwithpython.com/traces/dragon.html.

Designing the Program

Dragon Realm was a pretty simple game. The other games in this book will be a bit more
complicated. It sometimes helps to write down everything you want your game or program
to do before you start writing code. This is called "designing the program.”

For example, it may help to draw a flow charA flow chart is a picture that shows
every possible action that can happen in our game, and in what order. Normally we would
create a flow chart before writing our program, so that we remember to write code for each
thing that happens in the game. Figure 6-2 is a flow chart for Dragon Realm.

Show introduction

Ployer chooses
(L cave

Check for friendly
or hungry dragon

Flayer loses
sk +o play again

Figure 6-2: Flow chart for the Dragon Realm game.

To see what happens in the game, put your fing the "Start" box and follow or
75

arrow from the box to another box. Your finge kind of like the program executio
Your finger will trace out a path from box to box, until finally your finger lands on the
"End" box. As you can see, when you get to the "Check for friendly or hungry dragon™ box,
the program could either go to the "Player wins" box or the "Player loses" box. Either way,
both paths will end up at the "Ask to play again” box, and from there the program will
either end or show the introduction to the player again.

Summary

In the "Dragon Realm" game, we created our own functions that the main section of the
program called. You can think of functions as mini-programs within our program. The code
inside the function is run when our program calls that function. By breaking up our code
into functions, we can organize our code into smaller and easier to understand sections. We
can also run the same code by placing it inside of a function, instead of typing it out each
time we want to run that code.

The inputs for functions are the arguments we pass when we make a function call. The
function call itself evaluates to a value called the return value. The return value is the
output of the function.

We also learned about variable scopes. Variables that are created inside of a function
exist in the local scope, and variables created outside of all functions exist in the global
scope. Code in the global scope can not make use of local variables. If a local variable has
the same name as a variable in the global scope, Python considers it to be a separate
variable and assigning new values to the local variable will not change the value in the
global variable.

Variable scopes might seem complicated, but they are very useful for organizing
functions as pieces of code that are separate from the rest of the function. Because each
function has it's own local scope, we can be sure that the code in one function will not
cause bugs in other functions.

All nontrivial programs use functions because they are so useful, including the rest of the

games in this book. By understanding how functions work, we can save ourselves a lot of
typing and mak our programs easier to read | on

76

Chapter ;

Using the Debugger

Topics Covered In This Chapter:

o 3 Different Types of Errors
IDLE's Debugger

Stepping Into, Over, and Out
Go and Quit

Break Points

Bugs!

"On two occasions | have been asked, 'Pray, Mr. Babbage, if you put into the
machine wrong figures, will the right answers come out?' | am not able rightly
to apprehend the kind of confusion of ideas that could provoke such a
guestion."

-Charles Babbage, 19th century English mathematician, philosopher, inventor
and mechanical engineer who originated the concept of a programmable
computer.

http://en.wikipedia.org/wiki/Charles_Babbage

If you enter the wrong code, the computer will not give you the right program. A
computer program will always do what you tell it to, but what youhelprogram to do
might not be the same as what you wartteel program to do. A bugs another name for
an error or problem in a computer program. Bugs happen when the programmer

77

carefully thought about what exactly the program is doing. There are three types
that can happen with your program:

e Syntax Errors are a type of bug that comes from typos in your program. When the
Python interpreter sees a syntax error, it is because your code is not written in proper
Python language. A Python program with even a single syntax error will not run.

e Runtime Errors are bugs that happen while the program is running (that is,
executing). The program will work up until it reaches the line of code with the error,
and then the program terminates with an error message (this is called crashing
The Python interpreter will display something called a "traceback™" and show the line
where the problem happens.

e Semantic Errors are the trickiest bugs to fix. This bug does not crash the program,
and the program appears to work fine. However, it is not doing what the programmer
intended for the program to do. For example, if the programmer wants the variable
total to be the sum of the values in variables a, b, and c but writéstal = a
+ b * ¢, then the value in total will be wrong. This won't cause the program to
crash immediately, but may or may not cause some other code to crash later on
because of the unexpected valuéoial.

Finding bugs in our program can be hard, if you even notice them at all! When running
your program, you may discover that sometimes functions are not called when they are
suppose to be, or maybe they are called too many times. You may code the condition for a
while loop wrong, so that it loops the wrong number of times. (A loop in your program
that never exits is a kind of bug is called an infinite lobporder to stop this program,
you can press Ctrl-C in the interactive shell.) Any of these things could mistakenly happen
in your code if you are not careful.

It can be hard to figure out how your code could be producing a bug because all the lines
of code get executed very quickly and the values in variables change so often. A
debugger is a program that lets you step through your code one line at a time (in the same
order that Python executes them), and shows what values are stored in all of the variables.
A debugger lets you look at how each line of code affects your program. This can be very
helpful to figure out what exactly the program is doing.

A video tutorial on using the debugger that comes with IDLE can be found on this book's
website at http://inventwithpython.com/videos/

Starting the Debugger

In IDLE, go ahead and open the Dragon Realm game that you made in the last chapter.
In the interactive shell, click on Fiend then Openand then select dragon.gdypr
whatever you named the file when you saved it).

After opening the dragon.pyile, click on the Debugmenu item at the top of the
interactive shell, and then click Debuggen make the Debug Control window appear
(Figure *-1).

78

7 - Using the Debugger

Irebug Conirol
fltarm) _I
ki
Lo
Pire

Figure 7-1: The Debug Control window.

Now when you run the Dragon Realm game (by pressing F5 or clickingtRemRun
Module in the file editor window's top menu), the debugger program will be activated. This
is called running a program "under a debugger". In the Debug Control window, check the
Sour ce and Globalscheckboxes. Then run the program by pressing F5 in the file editor
window (Figure 7-2).

Pychon 3.1rel (£3lrcl:73069, May 31 2009, 05:57:10) [MSC v.1500 32 bit (Intel)]
oh win3id

Type "ocopyright', "credits® or Plicense ()" for more information.

e

[DEEUG O]

Eah S CESECSCESSs oSS sEsssssssss=s= RESTART sesssss s sso s s S s s sss s s=a=

[DEBUS ON]

b =
Debug Contral E||E|E|

¥ Stack ¥ Source

Go|5tmfam|w[mﬂp Locaks ¥ Globals

dragon.py: 1 <modules()

‘b’ run(), line 378: execomd, giobals, locals) J

- _-'l'--'Jr"___'. < rl'l.'-:IIJlg-':-E_!. ine 1 impork randdom

I Locals
Mo

_ builins__ <madule buiting’ (buik-n)>

dor Mone

_ name__main_

__package__ Mong

Figure 7-2: Running the Dragon Realm game under the debugger.

When you run Python programs with the debugger activated, the program will stop
before it executes the first line of code. If you click on the file editor window's title ba
79

you have checked ttSour ce checkbox in the Debug Control window), the first line
code is highlighted in gray. Also, the Debug Control window shows that you are on line 1,
which is the import random line.

The debugger lets you execute one line or code at a time (called "stepping"). To execute
a single instruction, click the Stdputton in the Debug Window. Go ahead and click the
Step button once. This will cause the Python interpretter to execute the import random
instruction, and then stop before it executes the next instruction. The Debug Control
window will change to show that you are now on line 2, the import timeline.

Stepping

Stepping is the process of executing one instruction of the program at a time. Doing
this lets you see what happens after running a single line of code, which can help you figure
out where a bug first appears in your programs.

The Debug Control window will show you what line is abtoitbe executed when you
click the Stepbutton in the Debug Control window. This window will also tell you what
line number it is on and show you the instruction itself.

Click the Step button again to run the import time instruction. The debugger will
execute this import statment and then move to line 4. The debugger skipped line 3
because it is a blank line. Notice that you can only step forward with the debugger, you
cannot go backwards.

Click the Step button three more times. This will execute the three def statements to
define the functions. The debugger skips over the def-blocks of these functions because we
are only defining the functions, not calling them. As you define these functions, they will
appear in the Globals area of the Debug Control window.

The text next to the function names in the Global area will look something like
"<function checkCave at 0x012859B0>". The module names also have confusing looking
text next to them, such as "<module 'random’ from 'C:\\Python25\lib\\random.pyc'>". This
is only useful to advanced Python programmers, and you don't need to know what this
means to debug your programs. Just seeing that the functions and modules are there in the
Global area will tell you if the function has been defined or the module has been imported.
You can also ignore the __builtins__, doc__, and __name___lines in the Global area.

The debugger will now be (after clicking Step four times) at line 35lthgain =
'ves' line. When you click Step to execute this line, the playAgain variable will be
created and will show up in the Global area. Next to it will be the value stored in this
variable, which is the string 'yes'. The debugger lets you see the values of all the
variables in the program as the run program runs. This can be very useful if you need to fix
your programs.

TheGlobal area in the Debug Control window is where all the global variable:

80

7 - Using the Debugger
stored. Global variables are the variables that are created outside of any functic
is, in the global scope). There is also a Local gredich shows you the local scope
variables and their values. The local area will only have variables in it when the program
execution is inside of a function. Since we are still in the global scope, this area is blank.

The Python debugger (and almost all debuggers) only lets you step forward in your
program. Once you have executed an instruction, you cannot step backwards and undo the
instruction.

The Go and Quit Buttons

If you get tired of clicking the step button over and over again, and just want the program
to run normally, click the Go button at the top of the Debug Control window. This will tell
the program to run as if you didn't have the debugger turned on.

If you ever want to terminate the program while it is running, just click the Quit button at
the top of the Debug Control window. The program will immediately exit. This can be
handy if you want to stop the program and start debugging it from the beginning again.

Stepping Into, Over, and Out

Start the Dragon Realm program with the debugger, and keep stepping (by clicking the
Step button in the Debug Control window) until the debugger is at line 38 (the call to
displayintro() line). When you click Step again, the debugger will jump into this
function call and appear on line 5 (the first line in the def-block odlig@ayintro()
function. The kind of stepping we have been doing is called stepping, ingocause it will
step into function call

81

[Debug Cantrl NG
W Stack [Source
¥ Locals ¥ Globals

Ga sep | over [oue | Q|

dragon.py: 3 <moduls ()

"hidky’

und), Ine 378: execcnd, globals, locals B
1 ' emadule =], ne 38; displs i)

o

L BIX

Filg Edit Foemat Run Oplions ‘Windows Help

cavaMumbeyr = choozeCave (]

pEint (' Cobbles yvou dowvn 1n one bite!')
playhgain = 'yas!
& playhgain == 'pag’ playigain == _1
| displayIncea(] -

checkCave [caveNumber)

peine (‘Do You want Eo play again? (yas of no }

playigain - inpuc ()

in: 38/Cal:0
playhgain ves'
randam <rodule ‘random’ From 'C | Python3 1| B andom. py" >
L <moduls Time' (buit-in) >

Figure 7-3: Keep stepping until you reach line 38.

If you click Step a few more times, you will see the output of the print() function call
appear in the interactive shell window one at a time. When you step over the last print()
function call in the displayintro() function, the debugger will jump back to the first
line (line 40) after function call.

Click Step one more time to step into the choosecave function. Keep stepping through
the code until you execute the function call raw_input() call. The program will wait
until you type a response into the shell, just like when you run the program normally. If you
try clicking the Step button now, nothing will happen because the program will wait for a
response.

Enter a response by clicking back on the interactive shell window and type which cave
you want to enter. You have to click on the bottom line in the shell before typing. If you are
typing but nothing appears on the screen (and the blinking cursor is not below the Which
cave will you go into? (1 or 2) text), then you have not clicked on the last
line of the shell window.

Once you press the Enter key to enter your response, the debugger will continue to step
lines of code again. Instead of clicking Step, try clicking the uiton on the Debug
Control window. This is called stepping oybecause it will cause the debugger to step
over as many lines as it needs to until it jumps out of the function that it was in. For
example, if you were inside the displayIntro() function on line 6, clicking Out would

82

7 - Using the Debugger
have the debugger keep stepping until the function was over and returned to the |
the call to displayIntro(). Stepping out can save you from having to click Step over
and overagain to jump out of the function.

If you are not inside a function (that is, you are in the global scope) and you click Out,
the debugger will execute all the remaining lines in the program (exactly as if you clicked
the Go button).

The last kind of stepping is done by the Owertton in the Debug Control window, and
it is for stepping over function calls. Stepping oveneans that the debugger will not step
into function calls. Instead, the debugger executes all the code inside the function at once
and only stop at the line after the function call. This is useful if you do not want to step
through every single line inside the function.

You now know what the five buttons at the top of the Debug Control window do. Here's
arecap:

o Go - Executes the rest of the code as normal, or until it reaches a break point. (Break
points are described later.)

e Step - Step one line of code. If the line is a function call, the debugger will step into
the function.

e Over - Step one line of code. If the line is a function call, the debugger will not step
into the function, but instead step ovéne call.

o Out - Keeps stepping over lines of code until the debugger leaves the function it was

in when Out was clicked. This steps oaf the function.

Quit - Immediately terminates the program.

Find the Bug

Using the debugger is a good way to figure out what is causing bugs in your program. As
an example, here is a small program that has a bug in it. The program comes up with a
random addition problem for the user to solve. In the interactive shell window, click on
File, then New Window to open a new file editor window. Type this program into that
window, and save the program as buggy.py

buggy.py

i mport random

numberl = random.randint(1, 10)

number2 = random.randint(1, 10)

print('What is ' + str(numberl) + ' + ' + str(humber2) +
2

5. answer = input()

6. if answer == numberl + number2:

7. print('Correct!)
8
9

e

. else:
print('Nope! The answer is ' + str(numberl +

83

" number2)) ||

Type the program in exactly as it is above, even if you can already tell what the bug is.
Then trying running the program by pressing F5. This is a simple arithmetic game that
comes up with two random numbers and asks you to add them. Here's what it might look
like when you run the program:

What is 5 + 1?
6
Nope! The answer is 6

That's not right! This program has a semantic bug in it. Even if the user types in the
correct answer, the program says they are wrong.

You could look at the code and think hard about where it went wrong. That works
sometimes. But you might figure out the cause of the bug quicker if you run the program
under the debugger. At the top of the interactive shell window, cliékebng, then
Debugger (if there is no check already by the Debugger menu item) to display the Debug
Control window. In the Debug Control window, make sure the all four checkboxes (Stack,
Source, Locals, Globals) are checked. This makes the Debug Control window provide the
most information. Then pre§$ in the file editor window to run the program under the
debugger.

The debugger starts at the import random line. Nothing special happens here, so just
click Step to execute it. You should see tteeddom module at the bottom of the Debug
Control window in the Globals area.

Click Step again to run line 2. A new file editor window will pop open. Remember that
therandint() function is inside the random module. When you stepped into the
function, you stepped into thiendom module because that is where the randinfunction
is. The functions that come with Python's modules almost never have bugs in their code, so
you can just clickOut to step out of the randint() function and back to your program.
After you have stepped out, you can closerémelom module's window.

Line 3 is also a call to the randint() function. We don't need to step through this code,
So just clickOver to step over this function call. Thandint() function's code is still
executed, it is just executed all at once so that we don't have to step through it.

Line 4 is a print() call to show the player the random numbers. But since we are using
the debugger, we know what numbers the program will print even before it prints them! Just
look at the Globals area of the Debug Control window. You can seeithieerl and
number2 variables, and next to them are the integer values stored in those variables. When
| ran the debugger, it looked like tf

84

7 - Using the Debugger

[rebug Conteol

i 1 F ek [Soros
0 | RO |

Vera)

e

Figure 7-4: The Debug Control window.

The numberl variable has the value 9 and thember2 variable has the valu&O.
When you click Step, the program will display the string in the print()call with these
values. (Of course, we use the str() function so that we can concatenate the string
version of these integers.)

Clicking on Step on line 5 will cause the debugger to wait until the player enters a
response. Go ahead and type in the correct answer (in my case, 19) into the interactive shell
window. The debugger will resume and move down to line 6.

Line 6 is an if statement. The condition is that the value in answer must match the
sum of numberl and number2. If the condition isTrue, then the debugger will move to
line 7. If the condition is False, the debugger will move to line 9. Click Step one more
time to find out where it goes.

The debugger is now on line 9! What happened? The condition in the if statement must
have been False. Take a look at the values furmberl, number2, and answer.
Notice that numberl andnumber2 are integers, so their sum would have also been an
integer. But answer is a string. That means that the answer == numberl +
number2 condition would have evaluated th9' == 19. A string value and an integer
value will always not equal each other, so the condition would have evaluated to False.

That is the bug in the program. The bug is that we use answer when we should be using
int(answer). Go ahead and change line 6 to use int(answer) == numberl +
number2 instead of answer == numberl + number2 , and run the program again.

Whatis 2 + 3?
5
Correct!

This time, the program worked correctly. Run it one more time and enter a wrong answer
on purposed make sure the program doesn't tell us we gave the correct answer. We have
now debugged this program. Remember, the computer will run your programs exactly as
you type them, even if what you type is not what you in

85

Break Points

Stepping through the code one line at a time might still be too slow. Often you will want
the program to run at normal speed until it reaches a certain line. You can do this with
break points. A break points set on a line when you want the debugger to take control
once execution reaches that line. So if you think there is a problem with your code on, say,
line 17, just set a break point on line 17 and when execution reaches that line, the debugger
will stop execution. Then you can step through a few lines to see what is happening. Then
you can click Go to let the program execute until it reaches the end (or another break
point).

To set a break point, right-click on the line that you want a break point on and select "Set
Breakpoint” from the menu that appears. The line will be highlighted with yellow to
indicate a break point is on that line. You can set break points on as many lines as you
want. To remove the break point, click on the line and select "Clear Breakpoint" from the
menu that appears.

dragon.py - C:\book1svni4thedsrcd. 1\dragon. py
Fle Edt Formst Run Options Windows Help

T time :J

£ displayInteo():
pELRG ["Tou are in a land full of dragons. In fromt of you,')
print('you =ee two caves, In one cave, the dragon iz Ly

print ' and | share his treasur vou. The
print('is greedy and hungry, and wi 01l On =
print ()
chooseCave []
cave =

caye |=m °"31! I cavre = 13202

princ{'Vhich cave will you g0 inco? {1 - e |
cave = inputi)

LA

Figure 7-5: The file editor with two break points set.

Example of Using Break Points

Let's try debugging a program with break points. Here is a program that simulates coin
flips by calling random.randint(0, 1). Each time this function call returns the
integer 1, we will consider that "heads" and increment a variable called heads. We will
also increment a variable called flips to keep track of how many times we do this "coin
flip".

The program will do "coin flips" one thousand times. This would take a person over an
hour to do, but the computer can do it in one second! Type in the following code into the
file editor and save it as coinFlips.pYou can also download this code from
http://inventwithpython.com/coinFlips.

86

7 - Using the Debugger

coinFlips.py
This code can be downloaded from http://inventwithpython.com/coinFlips.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random

2. print('l will flip a coin 1000 times. Guess how many
times it will come up heads. (Press enter to begin)")
input()
. flips=0
heads =0
while flips < 1000:

if random.randint(0, 1) == 1:

heads = heads + 1
flips = flips + 1

[
CoOox~NoO~w

11. if flips == 900:

12. print("900 flips and there have been ' + str
(heads) + ' heads.")

13. if flips == 100:

14, print('At 100 tosses, heads has come up ' + str
(heads) + ' times so far.")

15. if flips == 500:

16. print('Half way done, and heads has come up ' +
str(heads) + ' times.")

17.

18. print()

19. print('Out of 1000 coin tosses, heads came up ' + str
(heads) + ' times!")

20. print("Were you close?")

The program runs pretty fast. It probably spent more time waiting for the user to press
the Enter key than it did doing the coin flips. Lets say we wanted to see it do coin flips one
by one. On the interactive shell's window, click on Debug and then Debugger at the top
menu to bring up the Debug Control window. Then press F5 to run the program.

The program starts in the debugger on line 1. Press Step three times in the Debug Control
window to execute the first three lines. You'll notice the buttons become disabled because
the input() function has been called and the interactive shell window is waiting for the
player to type something. Click on the interactive shell window and press Enter. (Be sure to
click beneath the text in the shell window, otherwise IDLE might not receive your
keystrokes.) After entering text for the input() call, the Step buttons will become
enabled again.

You can click Step a few more times, but you'll find that it would take quite a while to

get through the entire program. Instead, set a break point on lines 12, 14, and 16 (Figure 7-
6).

87

coinFlips. py - c:\book1svn\dthed\src3. 1\coinFlips. py
Ele Edit Formst fBun Options Windows Help
flips = flips + 1

flips == S00:

print (*900 flips and there have been ' + str(heads) + ' heads.')

flips == 100:

print (*At 100 tosses, heads has come up ' + scriheads)] + ' times 30 far.')
Llips == 500:

pEint (" Halz um,l done, and heads has come up ' + 3tr(heads) + ' cimes.')

print ()
pEAinT | ' Our f 1000 coin to=ses, heads came up ' + strihaad=) + ' times'')

mriwr § VP Elgvs veeven gl i LN

Figure 7-6: Three break points set.

After setting the breakpoints, click Go in the Debug Control window. The program will
run at its normal speed until it reaches flip 100. On that flip, the condition for the if
statement on line 13 is True. This causes line 14 (where we have a break point set) to
execute, which tells the debugger to stop the program and take over. Look at the Debug
Control window in the Globals section to see what the value of flips ahdads are.

Click Go again and the program will continue until it reaches the next break point on line
16. Again, see how the values in flips and heads have changed. You can click Go one
more time to continue the execution until it reaches the next break point.

And if you click Go again, the execution will continue until the next break point is
reached, which is on line 12. You probably noticed that the print() functions on lines
12, 14 and 16 are called in a different order than they appear in the source code. That is
because they are called in the order that thetatement's condition becomes True.
Using the debugger can help make it clear why this is.

Summary

Writing programs is only part of the work for making games. The next part is making
sure the code we wrote actually works. Debuggers let us step through the code one line at a
time, while examining which lines execute (and in what order) and what values the
variables contain. When this is too slow, we can set break points and click Go to let the
program run normally until it reaches a break point.

Using the debugger is a great way to understand what exactly a program is doing. While

this book provides explanations of all the games in it, the debugger can help you find out
more on your owil

88

Chapter 8

Flow Charts

Topics Covered In This Chapter:

e How to play Hangman.
o ASCII art
¢ Designing our game by drawing a flow chart before programming.

In this chapter, we are going to make a Hangman game. This game is more complicated
than our previous game, but it is also much more fun. Because the game is advanced, we
should first carefully plan it out by creating a diagram called a flow chart (explained later).
In the next two chapters, we will actually write out the code for Hangman.

In case you've never played Hangman before, let's first learn the rules for Hangman.

How to Play "Hangman"

In case you don't know, Hangman is a game for two people that's usually played using
paper and pencil. One player thinks of a word, and then draws a blank on the page for each
letter in the word. Then the second player tries to guess letters that might be in the word. If
they guess correctly, the first player writes the letter in the blank. If they guess incorrectly,
the first player draws a single body part of the hanging man. If the second player can guess
all the letters in the word before the man has been completely drawn, they win. But if they
can't figure it out in time, the man is hanged and they lose the game!

Sample Run of "Hangman"

Here is an example of what the player might see when they run the Hangman p
89

we will write later. The text that the player enters in shown in

HANGMAN

M ssed |l etters:

Guess a letter.

M ssed | etters:

a
Guess a letter.
0]

+-- -+

I

(@]

M ssed |l etters:

a

Guess a letter.

M ssed |l etters:

a

CGuess a letter.

90

or

8 - Flow Charts

M ssed letters: or

_at

Guess a letter.

a

You have already guessed that |etter. Choose again.
Guess a letter.

c

Yes! The secret word is "cat"! You have won!

Do you want to play again? (yes or no)

no

ASCII Art

Half of the lines of code in the Hangman program aren't really code at all, but are multiline
strings that use keyboard characters to draw pictures. This type of graphics is called ASCII
art (pronounced "ask-ee"), because keyboard characters (such as letters, numbers, and also
all the other signs on the keyboard) are called ASCII characters. ASCII stands for

American Standard Code for Information Interchange (we'll learn more about it in the

Caesar Cipher chapter). Here are a couple cats done in ASCII art:

|___ >y / XX XXX _
[. .) I xxx XX XXX XXX \
(v) _ XXX XXX XX XXX \
_] [XXXXXXXXX XX XX XX XX XXX\
| \ / xx 1\ XX xx\
| | / [\ X XX\
| \ | I\ | \ xx X\
| | I I |\ I __ z x o\
| | | \ | | \ \ z XXX
|1 | | -- I I \ oz I
[1] 7] \/ \ \
(CCCO / / | I I
] _ | XXX|

91

Designing a Program with a Flowchart

This game is a bit more complicated than the ones we've seen so far, so let's take a
moment to think about how it's put together. First we'll create a flow chart (like the one at
the end of the Dragon Realm chapter) to help us visualize what this program will do. A
flow chart is a diagram that shows a series of steps as a number of boxes connected with
arrows. Each box represents a step, and the arrows show how one step leads to other steps.
You can trace through the flow chart by putting your finger on the "Start" box of the flow
chart and following the arrows to other boxes until you get to the "End" box. You can only
move from one box to another in the direction of the arrow. You can never go backwards
(unless there is a second arrow going back, like in the "Player already guessed this letter”
box below.) Here is the complete flow chart for the Hangman game (Figure 8-1).

STERT

COME up withy (L
seCred word,

i

Show +he board and
blanks +o +he plaver,

Ployer already
SuEmEd Hais ledder,

:st plaver +o
ﬂLrESS i let+er.

Letter s not in
secred word,

Le+ter 5 in
secred word,

L L

Player has quessed all Player has run
leHers and wins. out of body

parts and loses.

Ask. plaver +o
plivy U.gul'n.

END

Figure 8-1: The complete flow chart for what happens in the Hangman game.

Of course, we don't havi® make a flow chart. We could just start writing code. But
often, once we start programming, we think of things that need to be added or char

92

8 - Flow Charts
that we hadn't consider before. We may end up having to change or delete a lot of
that we had already written, which would be a waste of effort. To avoid this, it's always

bestto think carefully, and plan how the program will work before we start writing it.

The following flow chart is provided as an example of what flow charts look like and
how to make them. For now, since you're just using the source code from this book, you
don't need to draw a flow chart before writing code. The program is already written, so you
don't have to plan anything out. But when you make your own games, a flow chart can be
very handy.

Creating the Flow Chart

Keep in mind, your flow charts don't always have to look exactly like this one. As long
as you understand the flow chart you made, it will be helpful when you start coding. We'll
begin with a flow chart that only has a "Start" and an "End" box, as shown in Figure 8-2:

START

END

Figure &2: Begin your flow chart with a Start and E box

93

Now let's think about what happens when we Hangman. First, one player (t
computer in this case) thinks of a secret word. Then the second player (the person running
the program) will guess letters. Let's add boxes for these events, as shown in Figure 8-3.
(The boxes that are new to each flow chart have a dashed outline around them.) The arrows
show the order that the program should move. That is, first the program should come up
with a secret word, and after that it should ask the player to guess a letter.

Come up with @
secre+ word.

Icfsh player +o
BUESE i let++er,

END

Figure 8-3: Draw out the first two steps of Hangman as boxes with descriptions.

But the game doesn't end after the player guesses one letter. It needs to check to see if
that letter is in the secret word not

94

8 - Flow Charts
Branching from a Flowchart Box

There are two possibilities: the letter will either be in the word or it won't be. This means
we ned to add twanew boxes to our flowchart. From the "Ask player to guess a letter"
box, we can only move to the "Letter is in secret word" drothe "Letter is not in secret
word" box. This will create a branch (that is, a split) in the flow chart, as show in Figure 8-
4:

START

4

Come up with a
secre+ word.

v

Flsk. ployer +o
quess a le++er.

— o o = ===

]
Let+ter is not in|l

secre+ word. :

- — -—

]

| Letter is in |
1| secre+ word.
]

END

Figure 8-4: There are two different things that could happen after
the player guesses, so have two arrows going to se boxes

95

If the letter is in the secret word, we nee check to see if the player has guessed a
letters, which would mean they've won the game. But, if the letter is not in the secret word,
anohe body part is added to the hanging man.

We can add boxes for those cases too. We don't need an arrow from the "Letter is in
secret word" box to the "Player has run out of body parts and loses" box, because it's
impossible to lose as long as you are only guessing correct letters. Also, it's impossible to
win as long as you are guessing only incorrect letters, so we don't need to draw that arrow
either. Our flow chart now looks like Figure 8-5.

START

.

Core up with a
secred word,

4y

Ask player +o
quess a letter.

Letter s not in
secred word,

Letter s in

secred word,

Floyer has _:}ue'ssed all

L]

x Player has run
Il letters and wins.

I

| L]
| I
[out of body |
parts and loses. ;

g ———_

- e — =

END

Figure &5: After the branch, the steps continue on their separate

96

8 - Flow Charts
Ending or Restarting the Game

Once the player has won or lost, we'll ask them if they want to play again with a new
secget word. If the player doesn't want to play again, the program will end. If the program
doesn't end, we think of a new secret word, as shown in Figure 8-6:

START

Come up with a
secréd word,

!

Ask player +o
ﬂuess o le+ter,

I_EHEF' I's "ﬁ . LE'H‘EJ' l-s net I.n
secres word. secret word,
Player has guessed all Player has run
letters and wins. out of body
parts and loses.

FAsk ploayer +o
play again.

Figure &6: The game ends if the player doesn't wa play again, or the game goes back to the begir

97

Guessing Again

This flow chart might look like it is finished, but there's something we're forgetting: the
player doesn't guess a letter just once. They have to keep guessing letters over and over

until they either win or lose. We need to draw two new arrows so the flow chart shows this,
as shown in Figure 8-7.

START

Com& up with Q@
secred word,

Le+ter s not in
secred wiord, =

|

Y

Ployer has ﬂue:ﬂied all Player has run
letters and wins, out of body

;LEH'EF i3 in
secred word,

parts and loses.

Ask player +o

. END
play a.gain,

Figure 8-7: The game does not always end after a guess. The new arrows (outlined) show that the player can guess
again

98

8 - Flow Charts
We are forgetting something else, as well. What if the g guesses a letter that they
guessed before? Rather than have them win or lose in this case, we'll allow them to guess a
different letter instead, as shown in Figure 8-8.

Come up with @ suEnEd His lerder,
secred word,

Ask plaver +o
o uess a letter
‘ Letter 5 in

secred word,

Leter 5 not in)

secred word,

L

Floyer hos BfJE‘SSEd all Pfﬂ\;e.r' s run
letters and wins, put of body

parts and loses.

ﬂsl-c player +o
plosy tls-.’.uh.

END

Figure 8-8: Adding a step in case the player guesses a letter they already guessed.
Offering Feedback to the Player

We also need some way to show the player how they're doing. In order to do this, we'll
show then the hangman board, as well as the secret word (with blanks for the letters they
haven't guessed yet). These visuals will let them see how close they are to winning or
losing the game.

We'll need to update this information every time the player guesses a letter. We can add
a "Show the board and blanks to the player.” box to the flow chart between the "Come up
with a secret word" box and the "Ask player to guess a letter" box, as shown in Figure 8-9.
This box will remind us that we need to show the player an updated hangman board so they
can see which letters they have guessed correctly and which letters are not in the secret
word.

99

STERT

Come up with Q@
secred+ word,

- - ;— **** Plaver already

Shows +Hhe boord and ﬂuezmed His lerter,
blanks +0 +he player.

Ask player +o
ﬂ'—l'E53 it lett+er,

Leter = in . LeHer s5onot in

Eered e, secret word,
Player has quessed qll Player has run
letters and wins. out of body

parts and loses.

Ask plaver +o
plu.\; u.ﬂal'n.

END

Figure 8-9: Adding "Show the board and blanks to the player." to give the player feedback.

That looks good! This flow chart completely maps out everything that can possibly
happen in Hangman, and in what order. Of course this flow chart is just an example-you
won't really need to use it, because you're just using the source code that's given here. But

when you design your own games, a flow chart can help you remember everything you
need to code.

Summary: The Importance of Planning Out the
Game

It may seem like a lot of work to sketch out a flow chart about the program first. After
all, people want to play games, not look at flowcharts! But it is much easier to make
changes and notice problems by thinking about how the program works before writing the
code for it.

If you jump in to write the code first, you may discover problems that requi to
100

8 - Flow Charts
change the code you've already written. Every time you change your co are taking
a chance that you create bugs by changing too little or too much. It is much better to know
what you want to build before you builc

101

Chapter 9

Hangman

Topics Covered In This Chapter:

Methods

Theappend() list method

The lower() and upper() string methods

The reverse() list method

The split() string method

The range() function

Thelist() function

for loops

elif statements

The startswith() and endswith() string methods.
The dictionary data type.

key-value pairs

The keys() and values() dictionary methods
Multiple variable assignment, such as a, b, c =[1, 2, 3]

This game introduces many new concepts. But don't worry; we'll experiment with these
programming concepts in the interactive shell first. Some data types such as strings and
lists have functions that are associated with their values called methods. We will learn
several different methods that can manipulate strings and lists for us. We will also learn
about a new type of loop called a for loop and a new type of data type called a dictionary.
Once you understand these concepts, it will be much easier to understand the game in this
chapter: Hangman.

You can learn more fro Wikipedia: http://en.wikipedia.org/wiki/Hangman_(gar
102

9 - Hangman

Hangman's Source Code

This chapter's game is a bit longer than our previous games. You can either type in the
code béow directly into the file editor (which | recommend) or you can obtain the code
from this book's website. To grab the code from the web, in a web browser go to the URL
http://inventwithpython.com/chapter9 and follow the instructions for downloading the
source code.

hangman.py

This code can be downloaded from http://inventwithpython.com/hangman.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com
1. import random
. HANGMANPICS = ["

+-—4

2

3

4

5

6. |
7.
8 |
9 |
10

11.

12, +--+

13 | |

14. O |

15, |

6. |

17. |

18. =========""
19.

20. +--—-+

21 | |

22. O |

23. | |

24, |

25 |

26, ========="'"
27.

28. +---+

29. |
30. O |
31 |
2. |

3. |

34, =========""
35.

36. +---+

37. |
38. O |

103

104

39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.

60.
. def getRandomWord(wordList):
62.

61

63.
64.
65.
. def displayBoard(HANGMANPICS, missedLetters,

66

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.

78.
79.

80.
81.

words = 'ant baboon badger bat bear beaver camel cat clam

cobra cougar coyote crow deer dog donkey duck eagle ferret
fox frog goat goose hawk lion lizard llama mole monkey
moose mouse mule newt otter owl panda parrot pigeon python
rabbit ram rat raven rhino salmon seal shark sheep skunk
sloth snake spider stork swan tiger toad trout turkey

turtle weasel whale wolf wombat zebra'.split()

This function returns a random string from the
passed list of strings.

wordIindex = random.randint(0, len(wordList) - 1)

return wordList[wordIndex]

correctLetters, secretWord):
print(HANGMANPICS[len(missedLetters)])

print()

print('Missed letters:', end="")

for letter in missedLetters:
print(letter, end="")

print()

blanks =" ' * len(secretWord)

for i in range(len(secretWord)): # replace blanks with
correctly guessed letters
if secretWord][i] in correctLetters:
blanks = blanks[:i] + secretWord[i] + blanks
[i+1:]

for letter in blanks: # show the secret word with
spaces in between each letter

82.
83.

print(letter, end=""
print()

84.

85

86.

87.
88.
89.
90.
91.
92.
93.
94.

95.
96.
97.
98.

. def getGuess(alreadyGuessed):

Returns the letter the player entered. This function
makes sure the player entered a single letter, and not
something else.

while True:

print(Guess a letter.")
guess = input()
guess = guess.lower()
if len(guess) = 1:
print('Please enter a single letter.")
elif guess in alreadyGuessed:
print("You have already guessed that letter.
Choose again.")
elif guess not in 'abcdefghijkimnopgrstuvwxyz':
print('Please enter a LETTER.")
else:
return guess

99.

100.
101.

102.
103.

def playAgain():
This function returns True if the player wants to
play again, otherwise it returns False.
print('Do you want to play again? (yes or no)')
return input().lower().startswith('y")

104.
105.

106.
107.
108.
109.
110.

printtHAN G MAN))

missedLetters ="

correctLetters ="

secretWord = getRandomWord(words)
gamelsDone = False

111.

112.
113.

while True:
displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

114.

115.
116.

Let the player type in a letter.
guess = getGuess(missedLetters + correctLetters)

117.

118.
119.

if guess in secretWord:
correctLetters = correctlLetters + guess

120.

121.
122.
123.
124.
125.
126.
127.
128.

129.

Check if the player has won
foundAllLetters = True
for i in range(len(secretWord)):
if secretWord[i] not in correctLetters:
foundAllLetters = False
break
if foundAllLetters:
print("Yes! The secret word is
+ "1 You have won!")
gamelsDone = True

+ secretWord

9 - Hangman

105

130. else:

131. missedLetters = missedLetters + guess

132.

133. # Check if player has guessed too many times and
lost

134. if len(missedLetters) == len(HANGMANPICS) - 1:

135. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

136. print("You have run out of guesses\nAfter ' +

str(len(missedLetters)) + ' missed guesses and ' + str(len
(correctlLetters)) + ' correct guesses, the word was ™ +
secretWord + ™)

137. gamelsDone = True

138.

139. # Ask the player if they want to play again (but only
if the game is done).

140. if gamelsDone:

141. if playAgain():

142. missedLetters ="

143. correctLetters ="

144, gamelsDone = False

145. secretWord = getRandomWord(words)
146. else:

147. break

How the Code Works

|| 1. i mport random ||

The Hangman program is going to randomly select a secret word from a list of secret
words. This means we will need tm@andom module imported.

2. HANGMANPICS =["
3

4. +-—+

5 1|

6. |

! |

8 |

9. |

10. =::::::=:"l, m

...the rest of the code is too big to show here...

This "line" of code a simple variable assignment, but it actually stretches over several real
lines in the source code. The ac "line" doesn't end until line 58. To help you undersit

106

9 - Hangman
what this code mear you should learn about mt-line strings and list

Multi-line Strings

Ordinarily when you write strings in your source code, the string has to be on one line.
However, if you use three single-quotes instead of one single-quote to begin and end the
string, the string can be on several lines:

>>> fizz = "'Dear Alice,

| will return home at the end of the month. | will
see you then.

Your friend,

Bob™

>>> print fizz

Dear Alice,

| will return home at the end of the month. | will
see you then.

Your friend,

Bob

>>>

If we didn't have multi-line strings, we would have to use thedonape character to
represent the new lines. But that can make the string hard to read in the source code, like in
this example:

>>> fizz = 'Dear Alice,\nl will return home at the
end of the month. | will see you then.\nYour
friend,\nBob'

>>> print fizz

Dear Alice,

| will return home at the end of the month. | will
see you then.

Your friend,

Bob

>>>

Multi-line strings do not have to keep the same indentation to remain in the same block.
Within the multi-line string, Python ignores the indentation rules it normally has for where
blocks end.

def writeLetter():
inside the def-block
print "'Dear Alice,

107

How are you? Write back to me soon.

Sincerely,
Bob™ # end of the multi-line string and print
statement
print 'P.S. | miss you." # still inside the
def-block

writeLetter() # This is the first line outside the
def-block.

Constant Variables

You may have noticed the#BANGMANPICS's name is in all capitals. This is the
programming convention for constant variables. Constamt® variables whose values do
not change throughout the program. Although we can change HANGMANPICS just like any
other variable, the all-caps reminds the programmer to not write code that does so.

Constant variables are helpful for providing descriptions for values that have a special
meaning. Since the multi-string value never changes, there is no reason we couldn't copy
this multi-line string each time we needed that value. HABGMANPICS variable never
varies. But it is much shorter to type HANGMANPICS than it is to type that large multi-line
string.

Also, there are cases where typing the value by itself may not be obvious. If we set a
variable eggs = 72 , we may forget why we were setting that variable to the intéger
But if we define a constant variadl®OZEN = 12 , then we could set eggs = DOZEN *

6 and by just looking at the code know that the eggs variable was set to six dozen.

Like all conventions, we dorfiave to use constant variables, or even put the names of
constant variables in all capitals. But doing it this way makes it easier for other
programmers to understand how these variables are used. (It even can help you if you are
looking at code you wrote a long time ago.)

Lists

| will now tell you about a new data type callelisa. A list value can contain several
other values in it. Try typing this into the sh§lpples', ‘oranges’, 'HELLO
WORLD. This is a list value that contains three string values. Just like any other value,
you can store this list in a variable. Try typsgam = [‘apples’, 'oranges’,
'HELLO WORLD'] , and then type sparno view the contents of spam.

. >>> spam = ['apples’, 'oranges’, 'HELLO WORLD']
| >>> spam

108

. 9 - Hangman
. [apples', 'oranges'’, 'HELLO WORLD'] :
P >>>

Lists are a good way to store several different values into one variable. The individual
values inside of a list are also called itemi&y typing:animals = ['‘aardvark’,
‘anteater’, 'antelope’, 'albert’] to store various strings into the variable
animals. The square brackets can also be used to get an item from a list. Try typing

animals[0], or animals[1], or animals[2] , or animals[3] into the shell to see
what they evaluate to.

>>> animals = ['aardvark’, 'anteater’, 'antelope’,
‘albert’]

>>> animals[0]
‘aardvark’

>>> animals[1]
‘anteater

>>> animals[2]
‘antelope’

>>> animals[3]
‘albert’

>>>

The nunibe between the square brackets isititex . In Python, the first index is the
number 0 instead of the number 1. So the first item in the list is at index 0, the second item
is at index 1, the third item is at index 2, and so on. Lists are very good when we have to

store lots and lots of values, but we don't want variables for each one. Otherwise we would
have something like this:

>>> gnimalsl = 'aardvark’
>>> animals2 = 'anteater’
>>> animals3 = 'antelope’
>>> animals4 = 'albert’
>>>

This makes working with all the strings as a group very hard, especially if you have
hundreds or thousands (or even millions) of different strings that you want stored in a list.
Using the square brackets, you can treat items in the list just like any other value. Try
typing animals[0] + animals[2] into the shell:

>>> animals[0] + animals[2]
‘aardvarkantelope’
>>>

109

Becauseanimals[0] evaluates to the striraardvark’ andanimals[2]
evaluates to the stririgntelope’, t hen the expression animals[0] + animals
[2] is the same as 'aardvark’ + 'antelope’. This string concatenation evaluates
to 'aardvarkantelope'

What happens if we enter an index that is larger than the list's largest index? Try typing
animals[4] or animals[99] into the shell:

>>> animals = [‘aardvark’, 'anteater’, 'antelope’,
‘albert’]

>>> animals[4]

Traceback (most recent call last):
File "™, line 1, in

animals[4]

IndexError: list index out of range
>>> animals[99]

Traceback (most recent call last):
File "™, line 1, in

animals[99]

IndexError: list index out of range
>>>

If you try accessing an index that is too large, you will get an index error

Changing the Values of List Items with Index
Assignment

You can also use the square brackets to change the value of an item in a list. Try typing
animals[1] = '"ANTEATER’, then type animals to view the list.

>>> animals = ['aardvark’, 'anteater’, 'antelope’,
‘albert’]

>>> animals[1] = 'ANTEATER'

>>> animals

[aardvark’, 'ANTEATER', 'antelope’, 'albert’]
>>>

The second item in the animals list has been overwritten with a new string.

List Concatenation

You can join lists together into one list with the + operator, just like you can join strings.

110

9 - Hangman
When joining lists, this is known dist concatenation . Try typing [1, 2, 3, 4]
+ ['apples’, 'oranges'’] + ['Alice’, 'Bob’] int o the shell:

>>>[1, 2, 3, 4] + ['apples’, 'oranges'] +
['Alice’, 'Bob']

[1, 2, 3, 4, 'apples’, 'oranges’, 'Alice’, 'Bob’]
>>>

Notice that lists do not have to store values of the same data types. The example above
has a list with both integers and strings in it.

The i n Operator

The in operator makes it easy to see if a value is inside a list or not. Expressions that use
the in operator return a boolean value: True if the value is in the list &atse if the

value is not in the list. Try typing 'antelope’ in animals into the shell:
>>> animals = ['aardvark’, 'anteater’, 'antelope’,
‘albert’]
>>> 'antelope’ in animals
True
>>>
The expression 'antelope’ in animals returns True because the string

‘antelope’ can be found in the list, animals. (It is located at index 2.)

But if we type the expression 'ant' in animals, this will return False because
the string 'ant’ does not exist in the list. We can try the expression 'ant' in
[beetle’, 'wasp’, 'ant’], and see that it will return True.

>>> animals = ['aardvark’, ‘anteater’, 'antelope’,
‘albert’]

>>> 'antelope’ in animals

True

>>>'ant' in animals

False

>>>"ant' in ['beetle’, 'wasp’, ‘ant]

True

>>>

Thein operator also works for strings as well as lists. You can check if one string exists

in another the same way you can check if a value exists in a list. Try typing 'hello’ in
111

‘Alice said hello to Bob.' into the shell. This expression will evaluate
True.

>>> 'hello' in 'Alice said hello to Bob.'
True
>>>

Removing Items from Lists with del Statements

You can remove items from a list with a del statement. ("del" is short for "delete.”) Try
creating a list of numbers by typing: spam = [2, 4, 6, 8, 10] and then del
spam[1]. Type spam to view the list's contents:

>>> spam = [2, 4, 6, 8, 10]
>>> del spam[1]

>>> spam

[2, 6, 8, 10]

>>>

Notice that when you deleted the item at index 1, the item that used to be at index 2
became the new index 1. The item that used to be at index 3 moved to be the new index 2.
Everything above the item that we deleted moved down one index. We caletype
spam[1] again and again to keep deleting items from the list:

>>> spam = [2, 4, 6, 8, 10]
>>> del spam[1]
>>> spam

[2, 6, 8, 10]

>>> del spam[1]
>>> spam

[2, 8, 10]

>>> del spam[1]
>>> spam

[2, 10]

>>>

Jug remember that del is a statement, not a function or an operator. It does not evaluate
to any return valu

112

9 - Hangman

Lists of Lists

Lists are a data type that can contain other values as items in the list. But these items can
alo beother lists. Let's say you have a list of groceries, a list of chores, and a list of your
favorite pies. You can put all three of these lists into another list. Try typing this into the
shell:

>>> groceries = ['eggs’, 'milk’, 'soup’, ‘apples’,

‘bread’]

>>> chores = ['clean’, 'mow the lawn’, 'go grocery
shopping']

>>> favoritePies = [‘apple’, ‘frumbleberry’]

>>> |istOfLists = [groceries, chores,

favoritePies]

>>> |istOfLists

[['eggs’, 'milk’, 'soup’, 'apples’, ‘bread,
['clean’, 'mow the lawn’, 'go grocery shopping 1,
['apple’, ‘frumbleberry1]

>>>

You could also type the following and get the same values for all four variables:

>>> |istOfLists = [['eggs’, 'milk’, 'soup’,
‘apples’, 'bread'], ['clean’, 'mow the lawn’, 'go
grocery shopping'], ['apple’, 'frumbleberry’]]
>>> groceries = listOfLists[0]

>>> chores = listOfLists[1]

>>> favoritePies = listOfLists[2]

>>> groceries

[eggs’, 'milk', 'soup’, 'apples’, 'bread’]

>>> chores

['clean’, 'mow the lawn’, 'go grocery shopping']
>>> favoritePies

['apple’, ‘frumbleberry’]
>>>

To get an item inside the list of lists, you would twe sets of square brackets like this:
listOfLists[1][2] which would evaluate to the string 'go grocery
shopping'. This is because listOfLists[1] evaluates to the list [‘clean’,
'mow the lawn’, 'go grocery shopping'][2]. That finally evaluates to
'go grocery shopping'.

Here is another example of a list of lists, along with some of the indexes that point to the
items in the list of lists named The red arrows point to indexes of the inner lists
113

themselves. The image is also flipped on its side to make it e¢ read

EQ_XED]
= x[0][0]
o x[0][1]
— ™ dJ " "
% % % = = ST < [
S, 0o N Anm 12 = x[1][2]
°© 9o 9o FHod ooy o %m—x[ﬂ
o ko ko o oo "
[[10, 2o, 301, [3, 2, 11, [8, 8, 8, 81, [42]] e x[2][1]
= x[2][2]
= x[2][3]
- x[3
§m3 . [3]

Figure 9-1: The indexes of a list of lists.

Meth ods

Methods are just like functions, but they are always attached to a value. For example,
all string values have a lower() method, which returns a copy of the string value in
lowercase. You cannot just call lower() by itself and you do not pass a string argument
to lower() by itself (as in lower('Hello")). You must attach the method call to a
specific string value using a period.

The | ower () and upper () String Methods

Try entering 'Hello world!".lower() into the interactive shell to see an example
of this method:

>>> "Hello world'.lower()
'hello world!"
>>>

There is also an upper() method for strings, which changes all the characters in a
string to uppercase. Try entering 'Hello world'.upper() into the shell:

114

9 - Hangman

>>> "Hello world'.upper()
'HELLO WORLD!"*
>>>

Because the upper() method returns a string, you can call a method on #iaing as
well. Try typing 'Hello world!.upper().lower() into the shell:

>>> "Hello world'.upper().lower()
'hello world!
>>>
'Hello world!".upper() eva luates to the string 'HELLO WORLD!', and then
we call that string'®ower() method. This returns the string'hello world!" , which

is the final value in the evaluation. The order is important. 'Hello world!".lower
().upper() is not the same as 'Hello world!".upper().lower()

>>> "Hello world'.lower().upper()
'HELLO WORLD!
>>>

Remember, if a string is stored in a variable, you can call a string method on that
variable. Look at this example:

>>> fizz = 'Hello world'
>>> fizz.upper()

'HELLO WORLD'
>>>

The reverse() and append() List Methods

The list data type also has methods. The reverse() methodilvreverse the order of
the items in the list. Try entering spam =[1, 2, 3, 4, 5, 6, 'meow’,
'woof'], and then spam.reverse() to reverse the list. Then enter spam to view the
contents of the variable.

i >>>spam =[1, 2, 3, 4, 5, 6, 'meow’, 'woof']
i >>> spam.reverse()

i >>> spam

i ['woof', 'meow, 6, 5, 4, 3, 2, 1]

115

P>>>

The most common list method you will use is append() This method will add the
value you pass as an argument to the end of the list. Try typing the following into the shell:

>>>eggs =[]

>>> eggs.append(‘hovercraft’)
>>> eggs

['hovercraft']

>>> eggs.append(‘eels’)
>>> eggS

['hovercraft', 'eels']

>>> eggs.append(42)
>>> eggS

[hovercratft', 'eels’, 42]
>>>

Though #ring and list data types have methods, integers do not happen to have any
methods.

The Difference Between Methods and Functions

You may be wondering why Python has methods, since they seem to act just like
functions. Some data types have methods. Methods are functions associated with values of
that data type. For example, string methods are functions that can be called on any string. If
you have the string valulello’, you could call the string method upper() like this:
'Hello".upper() . Or if the string 'Hello’ were stored in a variable namedspam, it
would look like this:spam.upper()

You cannot call string methods on values of other data types. For example, [1, 2,
‘apple'].upper() would cause an error because [1, 2, 'apple’] is a list and
upper() is a string method.

The values of data types that have methods are also called objects. Object-oriented
programming is a bit advanced for this book, and you don't need to completely understand
it to make games. Just understand that objects are another name for a values of data types
that have methods.

The split() List Method

Line 59 is a very long line of code, but it is really just a simple assignment statement.
This line also uses the split() method, which is a method for the string data type (just
like the lower() and upper() methods).

116

9 - Hangman

59. words = 'ant baboon badger bat bear beaver camel cat clam
cob r a cougar coyote crow deer dog donkey duck eagle
ferret fox frog goat goose hawk lion lizard llama mole
monkey moose mouse mule newt otter owl panda parrot
pigeon python rabbit ram rat raven rhino salmon seal
shark sheep skunk sloth snake spider stork swan tiger
toad trout turkey turtle weasel whale wolf wombat
zebra'.split()

As you can see, this line is just one very long string, full of words separated by spaces.
And at the end of the string, we call the split() method. Thesplit() method changes
this long string into a list, with each word making up a single list item. The "split" occurs
wherever a space occurs in the string. The reason we do it this way, instead of just writing
out the list, is that it is easier for us to type as one long string. If we created it as a list to
begin with, we would have to type: ['ant’, 'baboon’, 'badger’, ... and so on,
with quotes and commas for every single word.

For an example of how tteplit() string method works, try typing this into the shell:

>>>'My very energetic mother just served us nine
pies'.split()

[My', ‘'very', 'energetic’, 'mother’, 'just’,

'served’, 'us', 'nine’, 'pies’]

>>>

Theresult is a list of nine strings, one string for each of the words in the original string.
The spaces are dropped from the items in the list. Once we've called splitihe words
list will contain all the possible secret words that can be chosen by the computer for our
Hangman game. You can also add your own words to the string, or remove any you don't
want to be in the game. Just make sure that the words are separated by spaces.

How the Code Works

Starting on line 61, we define a new function caietRandomWord(), which has a
single parameter nameebrdList. We will call this function when we want to pick a
single secret word from a list of secret words.

61. def getRandomWord(wordList):

62. # This function returns a random string from the
passed list of strings.

63. wordindex = random.randint(0, len(wordList) - 1)

64. return wordListfwordIindex]

117

The functiongetRandomWord() is passed a list of strings as the argumel the
wordList parameter. On line 63, we will store a random index in this list in the
wordIndex va riable. We do this by callingandint() with two arguments. Remember
that arguments in a function call are separated by commas, so the first argument is 0 and
the second argument is len(wordList) - 1. The second argument is an expression
that is first evaluated. len(wordList) will return the integer size of the list passed to
getRandomWord(), minus one.

The reason we need the - 1 is because the indexes for list start at 0, not 1. If we have a
list of three items, the index of the first item is 0, the index of the second item is 1, the
index of the third item is 2. The length of this list is 3, but the index 3 is after the last index.
This is why we subtract 1 from the length.

For example, if we passed [‘apple’, 'orange’, grape'] as an argurgetR&mdomWord
(), then len(wordList) would return the integer 3 and the expression 3 - 1 would evaluate
to the integer 2.

That means that wordindex would contain the return value of randint(0, 2), which means
wordIndex would equal 0, 1, or 2. On line 64, we would return the element in wordList at
the integer index stored in wordIindex.

Let's pretend we did seifdpple’, 'orange’, grape’] as the argument to
getRandomWord() and that randint(0, 2) returned the integer 2. That would
mean that line 64 would become return wordList[2] , which would evaluate to
return 'grape’. This is how the getRandomWord() returns a random string in the
wordList list. The following code entered into the interactive shell demonstrates this:

>>> import random

>>> print(wordIindex)

2

>>> print(['apple’, ‘'orange’, 'grape’][wordindex])
grape

>>>

And remember, we can pass any list of strings we want to the getRandomWord()
function, which is what makes it so useful for our Hangman game.

Displaying the Board to the Player

Next we need to create another function which will print the hangman board on the
screen, along with how many letters the player has correctly (and incorrectly) guessed.

66. def displayBoard(HANGMANPICS, missedLetters,
cor rectlLetters, secretWord):

118

9 - Hangman
67. print(HANGMANPICS[len(missedLetters)])
68. print()

This code defines a new function nanaesplayBoard(). Thi sfunction has four
parameters. This function will implement the code for the "Show the board and blanks to the
player" box in our flow chart. Here is what each parameter means:

¢ HANGMANPICS - This is a list of multi-line strings that will display the board as
ASCII art. We will always pass the gloddANGMANPICS variable as the argument
for this parameter.

e missedLetters - This is a string made up of the letters the player has guessed that
are not in the secret word.

e correctLetters - This is a string made up of the letters the player has guessed
that are in the secret word.

e secretWord - This string is the secret word that the player is trying to guess..

The first print() function call will display the board. HANGMANPICS will be a list of
strings for each possible boaHIANGMANPICS[0] shows an empty gallows,
HANGMANPICS[1]shows the head (this happens when the player misses one letter),
HANGMANPICS[2] shows a head and body (this happens when the player misses two
letters), and so on until HANGMANPICS[6] when the full hangman is shown and the player
loses.

The number of letters in missedLetters will tell us how many incorrect guesses the
player has made. We can dalh(missedLetters) to find out this number. This
number can also be used as the index ttiRRGMANPICS list, which wlllow us to prin
the correct board for the number of incorrect guesses. ®issedLetters is ‘aetr’
thenlen(‘aetr’) will return 4 and we will display the string HANGMANPICS[4] . This
is whatHANGMANPICS[len(missedLetters)] evaluates to. This line shows the
correct hangman board to the player.

70. print('Missed letters:’, end="")
71. for letter in missedLetters:
72. print(letter, end="")

73. print()

Line 71 is a new type of loop, called a for loop. A forloop iskind of like awhile
loop. Line 72 is the entire body of the for loop. Thrange() function is often used with
for loops. | will explain both in the next two sections.

Remember that the keyword argument end="" uses only one = sign, not two.

119

The range() and I i st () Functions

The range() function is easy to understand. You can call it with either one or two
integer arguments. When called with one argumemge() will return a range object of
integers from 0 up to (but not including) the argument. This range object can be converted
to the more familiar list data type with the list() function. Try typing list(range
(10)) into the shell:

>>> list(range(10))
[0,1,2,3,4,5,6,7,8,9]
>>>

Thelist() function is very similar to the str() or int() functions. It just converts
the object it is passed into a list. It's very easy to generate huge lists windge¢)
function. Try typing in list(range(10000)) into the shell:

>>> list(range(10000))
[0,1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14,
15,...
...The text here has been skipped for
brevity...
...9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996,

9997, 9998, 9999]
>>>

The list is so huge, that it won't even all fit onto the screen. But we can save the list into
the variable just like any other list by entering this:

>>> spam = list(range(10000))
>>>

If you pa&s two arguments to range(), the list of integers it returns is from the first
argument up to (but not including) the second argument. Try typing list(range(10,
20)) into the shell:

>>> list(range(10, 20))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
>>>

Therange() is a very useful function, because we often use it in for loops (which are

120

9 - Hangman
much like thewhile loops we have alrea seen)

f or Loops

Thefor loop is very good at looping over a list of values. This is different from the
while loop, which loops as long as a certain condition is true. A for statement begins
with the for keyword, followed by a variable, followed by the keyword, followed by a
sequence (such as a list or string) or a range object (returned by the range() function),
and then a colon. Each time the program execution goes through the loop (that is, on each
iteration through the loop) the variable in tfar statement takes on the value of the next
item in the list.

For example, you just learned that the range(junction will return a list of integers.
We will use this list as the for statement's list. In the shell, type for i in range
(10): and press Enter. Nothing will happen, but the shell will indent the cursor, because it
Is waiting for you to type in the for-block. Type print(i) and press Enter. Then, to tell
the interactive shell you are done typing in the for-block, press Enter again to enter a blank
line. The shell will then execute your for statement and block:

>>> for i in range(10):
print(i)

0

1

2

3

4

5

6

7

8

9

>>>

Notice that withfor loops, you do not need to convert the range object returned by the
range() function into a list with list(). For loops do this for us automatically.

The for loop executes the code inside the for-block once for each item in the list. Each
time it executes the code in the for-block, the varialdessigned the next value of the
next item in the list. If we used the for statement with the list [0, 1, 2, 3, 4, 5,
6, 7, 8, 9] instead of range(10) , it would have been the same since the range()
function's return value is the same as tha

121

>>> for i in range([0, 1, 2, 3, 4,5, 6, 7, 8,
9)):
print(i)

0

1

2

3

4

5

6

7

8

9

>>>

Try typing this into the shelfor thing in ['cats’, 'pasta’,
‘programming’, 'spam’]: and press Enter, then type print('l really like
'+ thing) and press Enter, and then press Enter again to tell the shell to end the for-
block. The output should look like this:

>>> for thing in ['cats’, 'pasta’, 'programming’,
'spam’]:
print(’'l really like ' + thing)

| really like cats

| really like pasta

| really like programming
| really like spam

>>

And remember, because strings are also a sequence data type just like lists, you can use
them in for statements as well. This example uses a single character from the string on
each iteration:

>>> for i in 'Hello world!":
print(i)

——o T:

122

9 - Hangman

(@)

—a—=o0 s

>>>

A whi | e Loop Equivalent of a for Loop

Thefor loop is very similar to the while loop, but w hen you only need to iterate over
items in a list, using #or loop is much less code to type. You can makevhile loop
that acts the same way a®aloop by adding extra code:

>>> sequence = ['cats’, 'pasta’, '‘programming’,
'spam’]
>>>index =0
>>> while (index < len(sequence)):
thing = sequence[index]
print(’'l really like ' + thing)
index = index + 1

| really like cats

| really like pasta

| really like programming
| really like spam

>>>

But usng thefor statement automatically does all this extra code for us and makes
programming easier since we have less to type. Our Hangman game will use for loops so
you can see how useful they are in real games.

One more thing about for loops, is that the for statement has thekeyword in it. But
when you use thm keyword in a for statement, Python does not treat it like the in
operator you would use in something like 42 in [0, 42, 67]. The in keyword in
for statements is just used to separate the variable and the list it gets its values from.

The rest of thelisplayBoard() function displays the missed letters and creates the
string of the secret word with all the unguessed letters as blanks.

print(Missed letters:’, end="")
for letter in missedLetters:

123

print(letter, end="")
print()

This for loop one line 71 will display all the missed guesses that the player has made.
When you phy Hangman on paper, you usually write down these letters off to the side so
you know not to guess them again. On each iteration of the loop the védtieodvill
be each letter in missedLetters in turn. Remember that tled="" will replace the
newline character that is printed after the string is replaced by a single space character.

If missedLetters was ‘'ajtw' then this for loop would display ajt w.

Displaying the Secret Word with Blanks

So by this point we have shown the player the hangman board and the missed letters. Now
we want to print the secret word, except we want blank lines for the letters. We can use the _
character (called the underscore character) for this. But we should print the letters in the
secret word that the player has guessed, and use _ characters for the letters the player has not
guessed yet. We can first create a string with nothing but one underscore for each letter in
the secret word. Then we can replace the blanks for each lettaréctLetters. So if
the secret word wdstter' then the blanked out string would be ' ' (five _
characters). I€orrectLetters was the string 'rt' then we would want to change the
blanked string to _tt_r'. Here is the code that does that:

75. Dblanks ="' * len(secretWord)

76.

77. foriin range(len(secretWord)): # replace blanks with
correctly guessed letters

78. if secretWord][i] in correctLetters:

79. blanks = blanks[:i] + secretWord[i] + blanks
[i+1:]

80.

81. for letter in blanks: # show the secret word with
spaces in between each letter

Line 75 creates the blanks variable full of _ underscores using string replication.
Remember that th& operator can also be used on a string and an integer, so the expression
'hello’ * 3 evaluates to 'hellohellohello’. This will make sure that blanks
has the same number of underscoreseasetWord has letters.

Then we use a for loop to go through each lettersecretWord and replace the
underscore with the actual letter if it exists in correctLetters. Line 79 may look
confusing. It seems that we are using the square brackets witlatiks and
secretWord variables. But wait a seconalanks and secretWord are strings, not
lists. And thelen() function also only takes lists as parameters, not strings. But in Python,
many of the things you can do to | you can also do to strin

124

9 - Hangman

Replacing the Underscores with Correctly Guessed Letters

77. foriin range(len(secretWord)): # replace blanks
wit h correctly guessed letters

78. if secretWord[i] in correctLetters:

79. blanks = blanksl[:i] + secretWord][i] + blanks
[i+1:]

Let's pretend the value sécretWord is ‘otter' and the value in
correctLetters is 'tr'. Then len(secretWord) will return 5. Then range
(len(secretWord)) becomes range(5), which in turn returns the list [0, 1, 2,
3, 4].

Because the value of i will take on each valudOnl, 2, 3, 4], then the for
loop code is equivalent to this:

if secretWord|[0] in correctLetters:
blanks = blanks[:0] + secretWord[0] + blanks|[1:]
if secretWord[1] in correctLetters:
blanks = blanks[:1] + secretWord[1] + blanks[2:]
if secretWord|[2] in correctLetters:
blanks = blanks[:2] + secretWord[2] + blanks[3:]
if secretWord[3] in correctLetters:
blanks = blanks[:3] + secretWord[3] + blanks[4:]
if secretWord[4] in correctLetters:
blanks = blanks[:4] + secretWord[4] + blanks[5:]

(By the way, writing out the code like this is called loop unrolliny

If you are confused as to what the value of somethingbkkeetWord[0] or
blanks[3:] is, then look at this picture. It shows the value of thesecretWord and
blanks variables, and the index for each letter in the string.

blanks | __ |

secretWord o t t e r

L] 1 2 3 4

Figure 9-2: The indexes of thidanks and secretWord strings.
125

If we replace the list slices and the list indexes witl values that they represent,
unrolled loop code would be the same as this:

if ‘0" in 'tr'; # Condition is False, blanks ==

blanks =" +'0" +" "# This line is skipped.

if 't'"in 'tr': # Condition is True, blanks ==

blanks ="' "+'t'+' '"# This line is
executed.

if 't"in 'tr"; # Condition is True, blanks ==
l_t_l

blanks ="' t'+'t'+' '# Thisline is
executed.

if ‘e’ in 'tr'; # Condition is False, blanks ==
l_tt_l

blanks ='_tt'+'e' +'_'# This line is skipped.
if 'r"in 'tr'; # Condition is True, blanks ==
l_tt_l

blanks ="' tt '+ 'r'+ " # This line is
executed.

blanks now has the value '_tt_r'

The above three code examples all do the samething (at least, they do when
secretWord is 'otter’ and correctLetters is 'tr'. The first box is the actual
code we have in our game. The second box shows code that does the same thing except
without a for loop. The third box is the same as the second box, except we have evaluated
many of the expressions in the second box.

The next few lines of code display the new valublahks with spaces in between
each letter.

81. for letter in blanks: # show the secret word with
spaces in between each letter

82. print(letter, end="")

83. print()

This for loop will print out each character in the strifganks. Remember that by
now, blanks may have some of its underscores replaced with the letters in
secretWord. The end keyword argument in line 82's print() call makes the print
() function put a space character at the end of the string instead of a newline character.
This is the end of the displayBoard() function.

126

9 - Hangman

Get the Player's Guess

The getGuess() function we create next will be called whenever we want to let the
playe type in a letter to guess. The function returns the letter the player guessed as a string.
Further, getGuess() will make sure that the player types a valid letter before returning
from the function.

85. def getGuess(alreadyGuessed):

86. # Returns the letter the player entered. This
function makes sure the player entered a single letter,
and not something else.

The getGuess() function has a string parameter calledlreadyGuessed which

contains the letters the player has already guessed, and will ask the player to guess a single
letter. This single letter will be the return value for this function.

87. while True:

88. print(Guess a letter.")
89. guess = input()
90. guess = guess.lower()

We will use a while loop because we want to keep asking the player for a letter until
they enter text that is a single letter they have not guessed previously. Notice that the
condition for the while loop is simply the Boolean valu€rue. That means the only way
execution will ever leave this loop is by executing a break statement (which leaves the
loop) or areturn statement (which leaves the entire function). Such a loop is called an
infinite loop , because it will loop forever (unless it reachésemk statement).

The code inside the loop asks the player to enter a letter, which is stored in the variable
guess. If the player entered a capitalized letter, it will be converted to lowercase on line
90.

el i f ("Else If") Statements

Take a look at the following code:

if catName == "Fuzzball*:
print("Your cat is fuzzy.")
else:
print("Your cat is not very fuzzy at all.")

We've seen code like this before and it's rather simple. Eallidame variable is equal

to the string 'Fuzzball' , then the if statement's condition iSrue and we tell the user
127

that her cat fuzzy. If catName is anything else, then we tell the (her cat is no
fuzzy.

But what if we wanted something else besides "fuzzy" and "not fuzzy"? We could put
another if and else statement inside the firselse block like this:

if catName == "Fuzzball*:
print("Your cat is fuzzy.")

else:
if catName == 'Spots'
print("Your cat is spotted.”)
else:
print("Your cat is neither fuzzy nor
spotted.”)

But if we wanted more things, then the code starts to have a lot of indentation:

if catName == 'Fuzzball':
print("Your cat is fuzzy.")

else:
if catName == 'Spots'
print("Your cat is spotted.’)
else:

if catName == "FattyKitty’
print("Your cat is fat.")
else:
if catName == "Puff'
print("Your cat is puffy.’)
else:
print("Your cat is neither fuzzy
nor spotted nor fat nor puffy.")

Typing all those spaces means you have more chances of making a mistake with the
indentation. So Python has the elif keyword. Using elif , the above code looks like this:

if catName == "Fuzzball':
print("Your cat is fuzzy.")

elif catName == 'Spots’
print("Your cat is spotted.’)

elif catName == "FattyKitty'
print("Your cat is fat.")

elif catName == "Puff’
print("Your cat is puffy.’)
else:

128

9 - Hangman
i print("Your cat is neither fuzzy nor spotted ’
i nor fat nor puffy.")

If the condition for thef statement is False, then the program will check the
condition for the firselif statement (which is catName == 'Spots'. If that
condition isFalse, then the program will check the condition of the next elif statement.
If all of the conditions for the if and elif statements areFalse, then the code in the
else block executes.

But if one of theelif conditions are True, the elif-block code is executed and then
execution jumps down to the first line past the else-blockinBoone of the blocks in this
if-elif-else statement will be executed. You can also leave off the else-block if you don't
need one, and just have an if-elif statement.

Making Sure the Player Entered a Valid Guess

91. if len(guess) = 1:

92. print('Please enter a single letter.")

93. elif guess in alreadyGuessed:

94, print("You have already guessed that letter.
Choose again.")

95, elif guess not in 'abcdefghijkimnopgrstuvwxyz':

96. print(Please enter a LETTER.")

97. else:

98. return guess

Theguess variable contains the text the player typed in for their guess. We need to
make sure they typed in a single lowercase letter. If they didn't, we should loop back and
ask them again. Théstatement's condition checks that the text is one and only letter. If it
is not, then we execute the if-block code, and then execution jumps down past the else-
block. But since there is no more code after this if-elif-else statement, execution loops back
to line 87.

If the condition for thef statement is False, we check the elif statement's condition
on line 93. This condition i§rue if the letter exists inside thalreadyGuessed
variable (remember, this is a string that has every letter the player has already guessed). If
this condition is True, then we display the error message to the player, and jump down
past the else-block. But then we would be at the end of the while-block, so execution jumps
back up to line 87.

If the condition for thef statement and theelif statement are both False, then we
check the second elif statement's condition on line 95. If the player typed in a number or
a funny character (makirguess have a value like5' or '), then guess would not
exist in the string 'abcdefghijkimnopqgrstuvwxyz' . If this is the case, the elif
statement's condition &ue.

129

Figure -3 is an example celif statements. Unless these three conditions a
False, the player will keep looping and keep being asked for a letter. But when all three
of the conditions are False, then the else-block’s return statement will run and we will
exit this loop and function.

if len(guesz) !'= 1:
print|'Please enter a Zingle letter.')
=lif guess in alreadyGuessed:
print('¥ou have already guessed that letter.')
2lif guess not in 'aboedefghijklmnopgrstuywys'
print(['Please enter a LETTER.']
elze:
return guess

One and only one of these blocks will execute.

Figure 9-3: Theelif statement.

Asking the Player to Play Again

100. def playAgain():

101. # This function returns True if the player wants to
play again, otherwise it returns False.

102. print('Do you want to play again? (yes or no)’)

103. return input().lower().startswith('y")

The playAgain() function has just a print() function calland a return
statement. The return statement has an expression that looks complicated, but we can
break it down. Once we evaluate this expression to a value, that value will be returned from
this function.

The expression on line 103 doesn't have any operators, but it does have a function call
and two method calls. The function call is input() and the method calls dmaver()
and startswith('y'). Remember that method calls are function calls that are attached
by a period to thealue on theirleft. lower() is attached to the return value ofinput

0-

input() returns a string of the text that the user typed in. Here's a step by step look at
how Python evaluates this expression if the user types in YES.

return input().lower().startswith('y")

return 'YES'.lower().startswith('y")
130

9 - Hangman

L

return 'yes'.startswith('y")

return True

The pont of theplayAgain() function is to let the player type in yes or no to tell our
program if they want to play another round of Hangman. If the player types in YES, then
the return value ahput() is the string 'YES'. And 'YES'.lower() returns the
lowercase version of the attached string. So the return value of 'YES'.lower() is
'yes'.

But there's the second method call, startswith('y'). This function returns True if
the associated string begins with the string parameter between the parenthdsalseand
if it doesn't. The return value of 'yes'.startswith('y") is True.

Now we have evaluated this expression! We can see that what this does is let the player
type in a response, we lowercase the response, check if it begins with tHg' lettéf,
and then returifrue if it does and False if it doesn't. Whew!

On a side note, there is also a endswith(someString) string method that will
return True if the string ends with the string in someString and False if it doesn't.

Review of the Functions We Defined

That's all the functions we are creating for this game!

e getRandomWord(wordList) will take a list of strings passed to it as a
parameter, and return one string from it. That is how we will choose a word for the
player to guess.

o displayBoard(HANGMANPICS, missedLetters, correctLetters,
secretWord) will show the current state of the board, including how much of the
secret word the player has guessed so far and the wrong letters the player has
guessed. This function needs four parameters passed to work correctly.
HANGMANPICS is a list of strings that hold the ASCII art for each possible hangman
board.correctLetters and missedLetters are strings made up of the letters
that the player has guessed that are in and not in the secret worskcketiWord
is the secret word the player is trying to guess. This function has no return value.

e getGuess(alreadyGuessed) takes a string of letters the player has already
guessed and will keep asking the player for a letter that is a letter that he hasn't
already guessed. (That is, a letter that is natreadyGuessed. This function
returns the string of the acceptable letter the player guessed.

¢ playAgain() is a function that asks if the player wants to play another round of
Hangman. This function returisue if the player does and False if the player

131

doesn't

We'll now start the code for the main part of the game, which will call the above
functions as needed. Look back at our flow chart.

START

Come up with Q
secre+ word.

4

Show +he board and
Blanks +0 +he player.

Floyer lready
guea:sed His letter,

Ask player +o
ﬂLrESE o let+er.

Leter s not+ in
secred word,

L

Player has quessed all Player has run
letters and wins. out of body

Letter 5 in
secred word,

parts and loses.

Ask plaver +o
piu\; uﬂ.;lfﬂ.

END

Figure 9-4: The complete flow chart of Hangman.

The Main Code for Hangman

We need to write code that does everything in this flow chart, and does it in order. The
main part of the code starts at line 106. Everything previous was just function definitions
and a very large variable assignment for HANGMANPICS.

Setting Up the Variables

|| 106. print(HAN G M AN "

132

9 - Hangman
107. missedLetters ="
108. correctLetters ="
109. secretWord = getRandomWord(words)
110. gamelsDone = False

Line 106 is the first actual line that executes in our game. We start by assigning a blank
string formissedLetters and correctLetters, because the player has not guessed
any missed or correct letters yet. Then we galRandomWord(words), where words
is a variable with the huge list of possible secret words we assigned on line 59. The return
value ofgetRandomWord(words) is one of these words, and we save it to the
secretWord variable. Then we also set a variable named gamelsDoné-alse . We
will setgamelsDone to True when we want to signal that the game is over and the
program should ask the player if they want to play again.

Setting the values of these variables is what we do before the player starts guessing letters.

Displaying the Board to the Player

112. while True:
113. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

The while loop's condition is always True, which means we will always loop forever
until abreak statement is encountered. We will execute a breatatement when the gai
is over (either because the player won or the player lost).

Line 113 alls our displayBoard() function, passing it the list of hangman ASCII art
pictures and the three variables we set on lines 107, 108, and 109. Program execution moves
to the start otlisplayBoard() at line 66. Based on how many letters the player has
correctly guessed and missed, this function displays the appropriate hangman board to the
player.

Letting the Player Enter Their Guess

116. guess = getGuess(missedLetters + correctLetters)

115. # Let the player type in a letter. “

If you look at our flow chart, you see only one arrow going from the "Show the board and
the blnks to the player.” box to the "Ask a player to guess a letter.” box. Since we have
already written a function to get the guess from the player, let's call that function. Remember
that the function needs all the lettersnissedLetters and correctLetters
combined, so we will pass as an argument a string that is a concatenation of both of those
strings. This argument is needed by getGuess() because the function has code to check if
the player types in a letter that they have already gur

133

Checking if the Letter is in the Secret Word

119. correctLetters = correctLetters + guess

118. if guess in secretWord: “

Now let's see if the single letter in the guesdring exists in secretWord. If it does
exist, then we should concatenate the letter in guess to the correctLetters string.
Next we can check if we have guessed all of the letters and won.

Checking if the Player has Won

121. # Check if the player has won

122. foundAllLetters = True

123. for i in range(len(secretWord)):

124. if secretWord][i] not in correctLetters:
125. foundAllLetters = False

126. break

How do we know if the player has guessed every single letter in the secret word? Well,
correctLetters has each letter that the player correctly guessed andsecretWord is
the secret word itself. We can't just check if correctLetters == secretWord
because consider this situation: if secretWord was the stringfter' and
correctLetters was the string 'orte’ , then correctLetters ==
secretWord would be False even though the player has guessed each letter in the
secret word.

The player simply guessed the letters out of order and they still win, but our program
would incorrectly think the player hasn't won yet. Even if they did guess the letters in order,
correctLetters would be the string 'oter’ because the player can't guess the letter t
more than once. The expression 'otter' == 'oter' would evaluate to False even
though the player won.

The only way we can be sure the player won is to go through each letter in
secretWord and see if it exists in correctLetters . If, and only if, every single letter
in secretWord exists in correctLetters will the player have won.

Note that this is different than checking if every lettecomrectLetters isin
secretWord. If correctLetters was the string 'ot' and secretWord was
‘otter’, it would be true that every letter in 'ot' is in 'otter' , but that doesn't mean
the player has guessed the secret word and won.

So how can we do this? We can loop through each letter in secretWord and if we find
a letter that does not exist in correctLetters , we know that the player has not guessed
all the letters. This is why we create a new variable ndmetAllLetters and set it

134

9 - Hangman
to the Boolean valuTrue . We start out assuming that we have found all the le but

will change foundAllLetters to False w hen we find a letter in secretWord that is
not in correctLetters.

The for loop will go through the numbers 0 up to (but not including) the length of the
word. Remember that range(5) will evaluate to the list [0, 1, 2, 3, 4] . Soon
line 123, the program executes all the code inside the for-block with the vamalbblee
set to 0, therl, then 2, then 3, then 4.

We use range(len(secretWord)) so that i can be used to access each letter in the
secret word. So if the first letter secretWord (which is located at secretWord[0])
is not in correctLetters, we know we can set foundAllLetters to False. Also,
because we don't have to check the rest of the letters in secretWord, we can just break
out of this loop. Otherwise, we loop back to line 123 and check the next letter.

If foundAllLetters manages to survive every single letter without being turned to
False, then it will keep the original True value we gave it. Either way, the value in
foundAllLetters is accurate by the time we get past this for loop and run line 127.

129. if foundAllLetters:

130. print('"Yes! The secret word is ™ +
secretWord + ™! You have won!")

131. gamelsDone = True

This is a simple check to see if we found all the letters. If we have found every letter in
the secret word, we should tell the player that they have won. We will also set the
gamelsDone variable to True. We will check this variable to see if we should let the
player guess again or if the player is done guessing.

When the Player Guesses Incorrectly

|| 130. else: ||

Thisis the start of the else-block. Remember, the code in this block will execute if the
condition was False. But which condition? To find out, point your finger at the start of
the else keyword and move it straight up. You will see that the else keyword's
indentation is the same as the if keyword's indentation on line 118. So if the condition on
line 118 was False, then we will run the code in this else-block. Otherwise, we skip down
past the else-block to line 140.

|| 131. missedLetters = missedLetters + guess ||

135

Because the player's guessed lettel wrong, we will add it to thmissedLetters
string. This is like what we did on line 119 when the player guessed correctly.

133. # Check if player has guessed too many times and
lo st

134. if len(missedLetters) == len(HANGMANPICS) - 1:

135. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

136. print("You have run out of guesses!\nAfter '

+ str(len(missedLetters)) + ' missed guesses and ' + str
(len(correctLetters)) + ' correct guesses, the word was
" + secretWord + ")

137. gamelsDone = True

Think about how we know when the player has guessed too many times. When you play
Hangman on paper, this is when the drawing of the hangman is finished. We draw the
hangman on the screen with print() calls, based on how many letters are in
missedLetters. Remember that each time the player guesses wrong, we add (or as a
programmer would say, concatenate) the wrong letter to the stnnigsedLetters.

So the length of missedLetters (or, in code, len(missedLetters)) can tell us the
number of wrong guesses.

At what point does the player run out of guesses and lose? Well, the HANGMANPICS list
has 7 pictures (really, they are ASCII art strings). So vidiefmissedLetters)
equals 6, we know the player has lost because the hangman picture will be finished.
(Remember that HANGMANPICS[O] is the first item in the list, B ANGMANPICS[6]
is the last one. This is because the index of a list with 7 items goes from 0 to 6, not 1 to 7.)

So why do we have len(missedLetters) == len(HANGMANPICS) - 1 as
the condition on line 134, instead of len(missedLetters) == ? Pretend that we
add another string to the HANGMANPICS list (maybe a picture of the full hangman with a
tail, or a third mutant arm). Then the last picture in the list would be at HANGMANPICS
[7]. So not only would we have to change the HANGMANPICS list with a new string, but
we would also have to remember to change line 134 to len(missedLetters) ==
This might not be a big deal for a program like Hangman, but when you start writing larger
programs you may have to change several different lines of code all over your program just
to make a change in the program's behavior. This way, if we want to make the game harder
or easier, we just have to add or remove ASCII art strings to HANGMANPICS and change
nothing else.

A second reason we user len(HANGMANPICS) - 1 is so that when we read the code
in this program later, we know why this program behaves the way it does. If you wrote
len(missedLetters) == 6 and then looked at the code two weeks later, you may
wonder what is so special about the number 6. You may have forgotten that 6 is the last
index in the HANGMANPICS list. Of course, you could write a comment to remind yourself,
like:

136

9 - Hangman

134. if len(missedLetters) == 6: # 6 is the last index in the
HANGMANPICS list

But it is easier to just use len(HANGMANPICS) - 1 instead.

So, when the length of the missedLetters string is equal to len(HANGMANPICS)
- 1, we know the player has run out of guesses and has lost the game. We print a long
string telling the user what the secret word was, and then set the gamelsDone value to the
Boolean valu@rue. This is how we will tell ourselves that the game is done and we
should start over.

Remember that when we have \n in a string, that represents the newline character.

139. # Ask the player if they want to play again (but only
if the game is done).
140. if gamelsDone:

141. if playAgain():

142. missedLetters ="

143. correctLetters ="

144, gamelsDone = False

145. secretWord = getRandomWord(words)

If the player won or lost after guessing their letter, then our code would have set the
gamelsDone variable to True. If this is the case, we should ask the player if they want
to play again. We already wrote the playAgain() function to handle getting a yes or no
from the player. This function returns a Boolean valu&rat if the player wants to play
another game of Hangman, and False if they've had enough.

If the player does want to play again, we will reset the values in missedLetterand
correctLetters to blank strings, set gamelsDone to False, and then choose a new
secret word by calling getRandomWord() again, passing it the list of possible secret
words.

This way, when we loop back to the beginning of the loop (on line 112) the board will be
back to the start (remember we decide which hangman picture to show based on the length
of missedLetters, which we just set as the blank string) and the game will be just as
the first time we entered the loop. The only difference is we will have a new secret word,
because we programmed getRandomWord() to return a randomly chosen word each
time we call it.

There is a small chance that the new secret word will be the same as the old secret word,
but this is just a coincidence. Let's say you flipped a coin and it came up heads, and then
you flipped the coin again and it also came up heads. Both coin flips were random, it was
just a coincidence that they ce up the same both times. Accordingly, you may ge

137

same word return frorgetRandomWord() twice in a row, but this is jus
coincidence.

147. break

146. else: “

If the player typed in 'no’ when asked if they wanted to play again, then they return
value of the call to the playAgain() function would be False and the else-block
would have executed. This else-block only has one libegak statement. This causes
the execution to jump to the end of the loop that was started on line 112. But because there
is no more code after the loop, the program terminates.

Making New Changes to the Hangman Program

This program was much bigger than the Dragon Realm program, but this program is also
more sophisticated. It really helps to make a flow chart or small sketch to remember how
you want everything to work. Take a look at the flow chart and try to find the lines of code
that represent each block.

At this point, you can move on to the next chapter. But | suggest you keep reading on to
find out about some ways we can improve our Hangman game.

After you have played Hangman a few times, you might think that six guesses aren't
enough to get many of the words. We can easily give the player more guesses by adding
more multi-line strings to thEANGMANPICSst. It's easy, just change the] square
bracket on line 58 to a ,"" comma and three quotes (see line 57 below). Then add the
following:

58, =========z="' "
59.

60. +--—--+

61. | |

62. [0 |

63. I\ |

64. I\ |

65. |

66, ==========" "
67.

68. +--—--+

69. | |

70. 0] |

71 I\ |

72. I\ |

73. |

74, ==========""]

138

9 - Hangman
We have added two new mrline string: to the HANGMANPICS list, one with th
hangman's left ear drawn, and the other with both ears drawn. Because our program will tell
the plyer they have lost when the number of guesses is the same as the number of strings
in HANGMANPICS (minus one), this is the only change we need to make.

We can also change the list of words by changing the words on line 59. Instead of
animals, we could have colors:

59. words = 'red orange yellow green blue indigo violet white
bla ck brown'.split()

60. Or shapes:

61. words = 'square triangle rectangle circle ellipse rhombus
trapazoid chevron pentagon hexagon septagon
octogon'.split()

62. Or fruits:

63. words = 'apple orange lemon lime pear watermelon grape
grapefruit cherry banana cantalope mango strawberry
tomato'.split()

Dictionaries

With some modification, we can change our code so that our Hangman game can use all
of these words as separate sets. We can tell the player which set the secret word is from
(like "animal”, "color", "shape", or "fruit"). This way, the player isn't guessing animals all
the time.

To make this change, we will introduce a new data type called a dictionary
dictionary is a collection of other values much like a list, but instead of accessing the items
in the dictionary with an integer index, you access them with an index of any data type (but
most often strings).

Try typing the following into the shell:

>>> stuff = {'hello’:'Hello there, how are you?',
‘chat":'How is the weather?', 'goodbye"'It was
nice talking to you!'}

>>>

Those are curly braces { and }. On the keyboard they are on the same key as the square
braces [and]. We use curly braces to type out a dictionary value in Python. The values in
between them are key-value pairsThe keys are the things on the left of the colon and the
values are on the right of the colon. You can access the values (which are like items in lists)
in the dictionary by using the key (which are like indexes in lists). Try typing into the shell
stuff['hello’] and stuff['chat’] and stuff['goodbye’:

139

>>> stuff['hello’]

'Hello there, how are you?'
>>> stuff['chat’]

'How is the weather?'

>>> stuff['goodbye’]

'It was nice talking to you!'
>>>

Getting the Size of Dictionaries with | en()

You see, instead of putting an integer index in between the square brackets, you put a
key sting index. This will evaluate to the value for that key. You can get the size (that is,
how many key-value pairs in the dictionary) with tae() function. Try typing len
(stuff) into the shell:

>>> |en(stuff)
3
>>>

Thelist version of this dictionary would have only the values, and look something like
this:

listStuff = ['Hello there, how are you?', 'How is
the weather?', ‘It was nice talking to you!']

Thelist doesn't have any keys, likeello'and ‘chat' and 'goodbye’ in the
dictionary. We have to use integer indexes 0, 1, and 2.

The Difference Between Dictionaries and Lists

Dictionaries are different from lists because they are deoed . The first item in a list
named listStuff would be listStuff[0]. But there is no "first" item in a
dictionary, because dictionaries do not have any sort of order. Try typing this into the shell:

>>> favoritesl = {'fruit:'apples’,
‘animal’:'cats’, 'number':42}

>>> favorites2 = {"animal’'cats’, 'number:42,
fruit':'apples'}

>>> favoritesl == favorites2

True

140

) 9 - Hangman
P>>> i

As you @n see, the expression favorites1 == favorites2 evaluates tdrue

because dictionaries are unordered, and they are considered to be the same if they have the
same key-value pairs in them. Lists are ordered, so a list with the same values in them but
in a different order are not the same. Try typing this into the shell:

>>> |istFavsl = ['apples’, 'cats', 42]
>>> listFavs2 = ['cats’, 42, 'apples’]
>>> |istFavsl == listFavs2

False

>>>

As you @n see, the two lists listFavsl and listFavs2 are not considered to be the
same because order matters in lists.

You can also use integers as the keys for dictionaries. Dictionaries can have keys of any
data type, not just strings. But remember, bec@us®d ‘0" are different values, they will
be different keys. Try typing this into the shell:

>>> myDict = {'0"'a string’, 0:'an integer'}
>>> myDict[0]

‘an integer

>>> myDict['0']

‘a string'

>>>

You mightthink that using &or loop is hard with dictionaries because they do not have
integer indexes. But actually, it's easy. Try typing the following into the shell. (Here's a
hint, in IDLE, you do not have to type spaces to start a new block. IDLE does it for you. To

end the block, just insert a blank line by just hitting the Enter key. Or you could start a new
file, type in this code, and then press F5 to run the program.)

>>> favorites = {'fruit":'apples’, '‘animal’:'cats’,
'number:42}
>>> for i in favorites:
print(i)
fruit
number
animal
>>> for i in favorites:
print(favoritesi])

141

apples
42
cats
>>>

As you @n see, if you just use a dictionary ifoaloop, the variable i will take on the

values of the dictionary's keys, not its values. But if you have the dictionary and the key,
you can get the value as we do above Vatlorites[i]. But remember that because

dictionaries are unordered, you cannot predict which order the for loop will execute in.
Above, we typed thanimal' key as coming before the 'number' key, but the for
loop printed out 'number’ before ‘animal'.

Dictionaries also have two useful methokisys() and values(). These will return
values of a type calledict_keys and dict_values, respectively. Those data types
are beyond the scope of this book, but you can easily convert them to lists with the list()
function (just like str() converts a value to a string value.) Then you will have an ordered

list of the key values and the value values in the dictionary value. Try typing the following
into the shell:

>>> favorites = {'fruit":'apples’, '‘animal’:'cats’,
'number:42}

>>> |ist(favorites.keys())

[fruit’, 'number’, 'animal’]

>>> |ist(favorites.values())

['apples’, 42, 'cats’]

>>>

Using these methods to get a list of the keys and values that are in a dictionary can be
very helpful. Do not forget to convert the return valueliof_keys and dict_keys
with the dict_keys function first, otherwise you may get errors in your program.

Sets of Words for Hangman

We will make changes to our original Hangman program. These changes can be
downloaded from http://inventwithpython.com/hangman2.py

So how can we use dictionaries in our game? First, let's change therdstinto a

dictionary whose keys are strings and values are lists of strings. (Remember that the string
method split() evaluates to a list.

59. words = {'Colors":'red orange yellow green blue indigo
violet white black brown'.split(),

142

9 - Hangman

60. 'Shapes':'square triangle rectangle circle ellipse rhombus
tra pazoid chevron pentagon hexagon septagon octogon'.split
0.

61. 'Fruits''apple orange lemon lime pear watermelon grape
grapefruit cherry banana cantalope mango strawberry
tomato'.split(),

62. 'Animals':'bat bear beaver cat cougar crab deer dog donkey
duck eagle fish frog goat leech lion lizard monkey moose
mouse otter owl panda python rabbit rat shark sheep skunk
squid tiger turkey turtle weasel whale wolf wombat
zebra'.split()}

This code is put across multiple lines in the file, even though the Python interpreter thinks
of it as just one "line of code." (The line of code doesn't end until the final } curly brace.)

The random choi ce() Function
Now we will have to change our getRandomWord()function ® that it chooses a

random word from a dictionary of lists of strings, instead of from a list of strings. Here is
what the function originally looked like:

61. def getRandomWord(wordList):

62. # This function returns a random string from the
passed list of strings.

63. wordIndex = random.randint(0, len(wordList) - 1)

64. return wordList[wordindex]

Change the code in this function so that it looks like this:

64. def getRandomWord(wordDict):

65. # This function returns a random string from the
passed dictionary of lists of strings, and the key also.

66. # First, randomly select a key from the dictionary:

67. wordKey = random.choice(list(wordDict.keys()))

68.

69. # Second, randomly select a word from the key's list
in the dictionary:

70. wordIndex = random.randint(0, len(wordDict[wordKey]) -
1)

71.

72. return [wordDict[wordKey][wordIindex], wordKey]

Line 61 just changes the name of the parameter to something a little more descriptive.
Now ingead of choosing a random word from a list of strings, first we choose a random key
from the dictionary and then we choose a random word from the key's list of strings. Line 65
calls a new function in theandom module named choice(). The choice() function
has one parameter, a list. The return value of choice() is an item randomly selected from

143

this list each time it is calle

Remember that randint(a, b) will return a random integer between (and including)
the two integers a anld and choice(a) returns a random item from the lestLook at
these two lines of code, and figure out why they do the exact same thing:

random.randint(0, 9)
random.choice(list(range(0, 10)))

Line 64 (line 70 in the new code) has also been changed. Now instead of returning the
string wordList[wordindex] , We are returning a list with two items. The first item is
wordDict[wordKey][wordIndex]. The second item is wordKey. We return a list
because we actually want the getRandomWord() to return two values, so putting those
two values in a list and returning the list is the easiest way to do this.

Evaluating a Dictionary of Lists

wordDict[wordKey][wordindex] may look ki nd of complicated, but it is just an
expression you can evaluate one step at a time like anything else. First, imagine that
wordKey had the value 'Fruits' (which was chosen on line 65) and wordindex has
the value 5 (chosen on line 68). Here is how wordDict[wordKey][wordindex]
would evaluate:

wordDict[wordKey][wordIndex]

wordDict['Fruits'][5]

['apple’, ‘orange’, lemon’, 'lime’, 'pear’,
'watermelon', 'grape’, 'grapefruit’, ‘cherry’,
'‘banana’, ‘cantalope’, 'mango’, 'strawberry’,
'tomato’][5]

‘watermelon’

In the above case, the item in the list this function returns would be the string
‘watermelon'. (Remember that indexes start at 0, so [5] refers to the 6th item in the
list.)

There are just three more changes to make to our program. The first two are on the lines
that we call the getRandomWord() function. The function is called on lines 109 and 145
in the original progran

144

9 - Hangman

108. correctLetters ="

109. secretWord = getRandomWord(words)
110. gamelsDone = False

144, gamelsDone = False

145. secretWord = getRandomWord(words)
146. else:

Because the getRandomWord() function now returns a list of two items instead of a
string, secretWord will be assigned a list, not a string. We would then have to change
the code as follows:

108. correctlLetters ="

109. secretWord = getRandomWord(words)
110. secretKey = secretWord[1]

111. secretWord = secretWord[0]

112. gamelsDone = False

144. gamelsDone = False

145. secretWord = getRandomWord(words)
146. secretKey = secretWord[1]

147. secretWord = secretWord[0]

148. else:

With the above changes, secretWord is first a list of two items. Then we add a new
variable named secretKey and set it to the second item in secretWord. Then we set
secretWord itself to the first item in the secretWord list. That means that
secretWord will then be a string.

Multiple Assignment

But there is an easier way by doing a little trick with assignment statements. Try typing
the following into the shell:

>>> a, b, ¢ = ['apples’, ‘cats’, 42]
>>> g

‘apples’

>>> Db

‘cats’

>>> ¢

145

42
>>>

Thetrick is to put the same number of variables (delimited by commas) on the left side of
the = sign as are in the list on the right side of the = sign. Python will automatically assign
the first item's value in the list to the first variable, the second item's value to the second
variable, and so on. But if you do not have the same number of variables on the left side as
there are items in the list on the right side, the Python interpreter will give you an error.

>>> a, b, ¢, d =[apples’, 'cats’, 42]

Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>
a, b, ¢, d =['apples’, 'cats’, 42]
ValueError: need more than 3 values to unpack

>>> a, b, ¢, d =['apples’, 'cats']

Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module>
a, b, c = ['apples’, 'cats']
ValueError: need more than 2 values to unpack
>>>

So we should change our code in Hangman to use this trick, which will mean our
program uses fewer lines of code.

118. correctLetters ="
119. secretWord, secretKey = getRandomWord(words)
120. gamelsDone = False

155. gamelsDone = False
156. secretWord, secretKey = getRandomWord(words)
157. else:

Printing the Word Category for the Player

The last change we will make is to add a singpiet() cal | to tell the player which
set of words they are trying to guess. This way, when the player plays the game they will
know if the secret word is an animal, color, shape, or fruit. Add this line of code after line
112. Here is the original coc

146

9 - Hangman

112. while True:
113. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

Add the line so your program looks like this:

122. while True:

123. print(The secret word is in the set: ' + secretKey)

124. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

Now we are done with our changes. Instead of just a single list of words, the secret word
will be chosen from many different lists of words. We will also tell the player which set of
words the secret word is from. Try playing this new version. You can easily change the
words dictionary on line 59 to include more sets of words.

Summary

We're done with Hangman. This has been a long chapter, and several new concepts have
been introduced. But Hangman has been our most advanced game yet. As your games get
more and more complex, it'll be a good idea to sketch out a flow chart on paper of what
happens in your program.

Methods are functions that are associated with values. The return values of methods
depend on the values that the method is associated with.

for loops iterate over the items in a list. The range() function is often used wittor
loops because it is an easy way to create lists of sequential numbers.

Else if statements (which use the elif keyword) will execute their block if their
condition is True and the previous if andelif conditions are False

Dictionaries are very similar to lists except that they can use any value for an index. The
indexes in dictionaries are called keys. Keys can be strings, integers, or any value of any
data type

147

Chapter] D

Tic Tac Toe

Topics Covered In This Chapter:

« Atrtificial Intelligence

e List References

e Short-Circuit Evaluation
e The NoneValue

We will now create a Tic Tac Toe game where the player plays against a simple artificial
intelligence. An artificial intelligence (or Al) is a computer program that can
intelligently respond to the player's moves. This game doesn't introduce any complicated
new concepts. We will see that the artificial intelligence that plays Tic Tac Toe is really just
a few lines of code.

Tic Tac Toe is a simple game to play with a paper and pencil between two people. One
player is X and the other player is O. On a simple nine square grid (which we call the
board), the players take turns placing their X or O o)n the board. If a player gets three of
their marks on the board in a row, column or one of the two diagonals, they win.

Most games of Tic Tac Toe end in a draw which happens when the board is filled up
with neither player having three marks in a row. Instead of second player, our artificial
intelligence will make moves against the user. You can learn more about Tic Tac Toe from
Wikipedia: http://en.wikipedia.org/wiki/Tic-tac-toe

While this chapter may not introduce many new programming concepts, it does make
use of our existing programming knowledge to make an intelligent Tic Tac Toe player.
Let's get started by looking at a sample run of the pro

148

Sample Run of Tic Tac Toe

Welcome to Tic Tac Toe!
Do you want to be X or O?
X

The ¢ omputer will go first.

10 - Tic Tac Toe

149

O] IX
|1

The computer has beaten you! You lose.
Do you want to play again? (yes or no)
no

Source Code of Tic Tac Toe

In a nav file editor window, type in this source code and save tictectoe.py. Then run
the game by pressing F5. You do not need to type in this program before reading this
chapter. You can also download the source code by visiting the website at the URL
http://inventwithpython.com/chapter10 and following the instructions on the webpage.

tictactoe.py

This code can be downloaded from http://inventwithpython.com/tictactoe.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

. #Tic Tac Toe
import random
def drawBoard(board):

This function prints out the board that it was
passed.

ouhrwNME

© N

"board" is a list of 10 strings representing the
board (ignore index 0)

9. printC | "
10. print("' + board[7] +'| '+ board[8] +'| ' +

board[9])
11, print(| |
12. print(----------- D)

13. print(| |)
14. print("' + board[4] +'| '+ board[5] +"'| "' +

board[6])
15, print(| |)
16. print(----------- D)

17. printC | |)

18. print("' + board[1] +'| '+ board[2] +"'| ' +
board[3])

19. printC | |)

20.

21. def inputPlayerLetter():

22. # Let's the player type which letter they want to be.

23. # Returns a list with the player's letter as the
first item, and the computer's letter as the second.

24, letter="
25. while not (letter == 'X" or letter =="0"):
26. print('Do you want to be X or O?")

150

27.

letter = input().upper()

28.

29.

30.
31.
32.
33.

the first element in the tuple is the player's
letter, the second is the computer's letter.
if letter =="X":
return ['X', 'O]
else:
return ['O', 'X]

34.

35

36.
37.
38.
39.
40.

. def whoGoesFirst():
Randomly choose the player who goes first.
if random.randint(0, 1) == 0:
return ‘computer
else:
return 'player’

41.

42

43.

44,
45.

. def playAgain():
This function returns True if the player wants to
play again, otherwise it returns False.
print('Do you want to play again? (yes or no)’)
return input().lower().startswith('y")

46.

47

48.

. def makeMove(board, letter, move):
board[move] = letter

49.

50

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

. def isWinner(bo, le):

Given a board and a player's letter, this function
returns True if that player has won.

We use bo instead of board and le instead of letter
so we don't have to type as much.

return ((bo[7] == le and bo[8] == le and bo[9] == le)
or # across the top

(bo[4] == le and bo[5] == le and bo[6] == le) or #
across the middle

(bo[1] == le and bo[2] == le and bo[3] == le) or #
across the bottom

(bo[7] == le and bo[4] == le and bo[1] == le) or #
down the left side

(bo[8] == le and bo[5] == le and bo[2] == le) or #
down the middle

(bo[9] == le and bo[6] == le and bo[3] == le) or #
down the right side

(bo[7] == le and bo[5] == le and bo[3] == le) or #
diagonal

(bo[9] == le and bo[5] == le and bo[1] == le)) #
diagonal

61.

62

63.

64.

. def getBoardCopy(board):

Make a duplicate of the board list and return it the
duplicate.

dupeBoard =]

65.

66.
67.

for i in board:
dupeBoard.append(i)

10 - Tic Tac Toe

151

152

68.

69.

return dupeBoard

70.

71

72.

73.

. def isSpaceFree(board, move):

Return true if the passed move is free on the passed
board.

return board[move] ==""

74.

75

76.
77.
78.

79.
80.
81.

. def getPlayerMove(board):
Let the player type in his move.
move ="'
while move notin'12 3456 7 8 9'.split() or not
isSpaceFree(board, int(move)):
print("What is your next move? (1-9)")
move = input()
return int(move)

82.

83

84.

85.
86.
87.
88.
89.

. def chooseRandomMoveFromList(board, movesList):
Returns a valid move from the passed list on the
passed board.
Returns None if there is no valid move.
possibleMoves =[]
for i in movesList:
if isSpaceFree(board, i):
possibleMoves.append(i)

90.

91.
92.
93.
94.

if len(possibleMoves) = 0:

return random.choice(possibleMoves)
else:

return None

95.

96

97.

98.
99.
100.
101.

. def getComputerMove(board, computerLetter):
Given a board and the computer's letter, determine
where to move and return that move.
if computerLetter == 'X";
playerLetter = 'O’
else:
playerLetter = 'X'

102.

103.
104.
105.
106.
107.
108.
109.
110.

Here is our algorithm for our Tic Tac Toe Al:
First, check if we can win in the next move
foriin range(1, 10):
copy = getBoardCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, computerLetter, i)
if isWinner(copy, computerLetter):
return i

111.

112.

113.
114.
115.
116.

Check if the player could win on his next move, and
block them.
for i in range(1, 10):
copy = getBoardCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, playerLetter, i)

117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
. def isBoardFull(board):
133.

132

134.
135.
136.
137.
138.
139.
. print('Welcome to Tic Tac Toe!")
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.

140

if isWinner(copy, playerLetter):
return i

Try to take one of the corners, if they are free.
move = chooseRandomMoveFromList(board, [1, 3, 7, 9])
if move != None:

return move

Try to take the center, if it is free.
if isSpaceFree(board, 5):
return 5

Move on one of the sides.
return chooseRandomMoveFromList(board, [2, 4, 6, 8])

Return True if every space on the board has been
taken. Otherwise return False.
for i in range(1, 10):
if isSpaceFree(board, i):
return False
return True

while True:

Reset the board

theBoard =['"]* 10

playerLetter, computerLetter = inputPlayerLetter()
turn = whoGoesFirst()

print(‘The ' + turn + " will go first.")

gamelsPlaying = True

while gamelsPlaying:
if turn == 'player".
Player's turn.
drawBoard(theBoard)
move = getPlayerMove(theBoard)
makeMove(theBoard, playerLetter, move)

if isWinner(theBoard, playerLetter):
drawBoard(theBoard)
print('Hooray! You have won the game!’)
gamelsPlaying = False
else:
if isBoardFull(theBoard):
drawBoard(theBoard)
print(‘The game is a tie!")
break
else:
turn = '‘computer’

else:

10 - Tic Tac Toe

153

170.
171.

172.
173.
174.
175.
176.

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.

Computer's turn.

move = getComputerMove(theBoard,
computerLetter)

makeMove(theBoard, computerLetter, move)

if isWinner(theBoard, computerLetter):
drawBoard(theBoard)
print(‘'The computer has beaten you! You
lose.")
gamelsPlaying = False
else:
if isBoardFull(theBoard):
drawBoard(theBoard)
print(‘The game is a tie!")
break
else:
turn = 'player’

if not playAgain():
break

Designing the Program

154

START

Flsk for Lrecide woko
ployer's letrer, goes First.

'|-"Iu\,‘€r"1. Turr

CD.I'-'.FMJ%E‘:'.; Turr

et COMpLHEr S
v,

{:h(-'-.k i
Computer won.

(et players move,

Y

Check, if
player won.

L

Creck for +ie,

Creck for i,

Fak player +o
play aguin.

Figure 1(-1: Flow chart fo Tic Tac Tor

10 - Tic Tac Toe
Tic Tac Toe is a very easy and short game to play on pa our Tic Tac Toe computt
game, we'll let the player choose if they want to be X or O, randomly choose who goes
first, and then let the player and computer take turns making moves on the board. Here is
what a flow chart of this game could look like:

You can see a lot of the boxes on the left side of the chart are what happens during the
player's turn. The right side of the chart shows what happens on the computer's turn. The
player has an extra box for drawing the board because the computer doesn't need the board
printed on the screen. After the player or computer makes a move, we check if they won or
caused a tie, and then the game switches turns. If either the computer or player ties or wins
the game, we ask the player if they want to play again.

Representing the Board as Data

First, we need to figure out how we are going to represent the board as a variable. On
paper, he Tic Tac Toe board is drawn as a pair of horizontal lines and a pair of vertical
lines, with either an X, O, or empty space in each of the nine spaces.

In our program, we are going to represent the Tic Tac Toe board as a list of strings. Each
string will represent one of the nine positions on the board. We will give a number to each
of the spaces on the board. To make it easier to remember which index in the list is for
which piece, we will mirror the numbers on the keypad of our keyboard. See Figure 10-2.

Figure 10-2: The board will be numbered like the keyboard's number pad.

The strings will either be X' for the X player,O' for the O player, or a space string '
'to mark a spot on the board where no one has marked yet. The index of the string in the
list will also be the number of the space on the board.

So if we had a list with ten strings named board, then board[7] would be the top-left
square on the board (either an X, O, or blank space). boardi&puld be the very center.
When the player types in whi place they want to move, they will type a number from

155

9. (Because there no 0 on the keypad, we will just ignore the string at irO in our
list.)

Game Al

When we talk about how our Al
behaves, we will be talking about which
types of spaces on the board it will move
on. Just to be clear, we will label three
types of spaces on the Tic Tac Toe board:
corners, sides, and the center. Figure 10-3
is a chart of what each space is:

The Al for this game will follow a
simple algorithm. An algorithmis a
series of instructions to compute
something. This is a very loose In the case
of our Tic Tac Toe Al's algorithm, the
series of steps will determine which is tR€ure 13 Locations of the side, corner, and ce places
best place to move. There is nothing in the
code that says, "These lines are an algorithm." like there is with a function's def-block. We
just consider the Al algorithm as all the code that is used in our program that determines the
Al's next move.

Our algorithm will have the following steps:

1. First, see if there is a move the computer can make that will win the game. If there is,
take that move. Otherwise, go to step 2.

2. See if there is a move the player can make that will cause the computer to lose the
game. If there is, we should move there to block the player. Otherwise, go to step 3.

3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want to
take a corner piece instead of the center or a side piece.) If no corner piece is free,
then go to step 4.

4. Check if the center is free. If so, move there. If it isn't, then go to step 5.

5. Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps,
because if we have reached step 5 the side spaces are the only spaces left.

This all takes place in the "Get computer's move." box on our flow chart. We could add
this information to our flow chart lil this:

156

10 - Tic Tac Toe

J

1. Make winning move,

L

2. Block player's winning move.

L

| 3 Move on corner. J

3

4. Move on center.

L

l

[

|

L

5. Move on side.

Figure 10-4: The five steps of the "Get computer's move" algorithm.
The arrows leaving go to the "Check if computer won" box.

We will implement this algorithm as code in our getComputerMove() function, and
the other functions that getComputerMove() calls.

How the Code Works: Lines 1 to 81

Now that we know about how we want the program to work, let's look at what each line
does.

The Start of the Program

1. #Tic Tac Toe
2.
3. import random

The first couple of lines are a comment and importing the random module so we can
use the randint() function in our game.

157

Printing the Board on the Screen

5. def drawBoard(board):
6. # This function prints out the board that it was
passed.

7.
8. #"board"is a list of 10 strings representing the
board (ignore index 0)
9. printC | "
10. print("' + board[7] +'| "'+ board[8] + ' | ' +

board[9])
11, printC | [)
12, print(----------- D)

13. print |)
14. print('+ board[4] +' | ' + board[5] + ' | ' +

board[6])
15 print(| [)
16. print(*----------- D)

17. printC" | |)

18. print("' + board[1] +'| '+ board[2] +"| ' +
board[3])

19. printC | |)

This function will print out the game board, marked as directed by the board parameter.
Remember that our board is represented as a list of ten strings, where the string at index 1
is the mark on space 1 on the Tic Tac Toe board. (And remember that we ignore the string
at index 0, because the spaces are labeled with numbers 1 to 9.) Many of our functions will
work by passing the board as a list of ten strings to our functions. Be sure to get the spacing
right in the strings that are printed, otherwise the board will look funny when it is printed
on the screen.

Just as an example, here are some values that the board parameter could have (on the
left) and what the drawBoard() function would print out:

Table 1(-1: Examples cvalues olboard and output fron
drawBoard(board) cdls.

board data structure drawBoard(board) ou tput

| |
X|] |O
| |

[0 X, N

‘0L X L O X|0O]|
| |
| |
| |

158

10

- Tic Tac Toe

[I I’ 'OI’ IO'! I '1 I Il

[o, 1, '2','3,'4,
'5','6', '7", '8, '9']

159

The second to last board filled with X's could not possibly have happened the X
player skipped all of the O player's turns!) And the last board has strings of digits instead of
X and O, which are invalid strings for the board. But ttrawBoard() function doesn't
care. It just prints thboard parameter that it was passed. Computer programs only do
exactly what you tell them, even if you tell them the wrong things to do. We will just make
sure these invalid strings are not put into the passed list in the first place.

Letting the Player be X or O

21. def inputPlayerLetter():
22. # Let's the player type which letter they want to be.
23. # Returns a list with the player's letter as the

first item, and the computer's letter as the second.

24, letter="

25. while not (letter == 'X" or letter =="0"):
26. print('Do you want to be X or O?')
27. letter = input().upper()

The inputPlayerLetter() is a simple function. It asks if the player wants to be X
or O, and will keep asking the player (with thikile loop) until the player types in an X
or O. Notice on line 26 that we automatically change the string returned by the call to
input() to uppercase letters with the upper() string method.

The while loop's condition contains parentheses, which means the expression inside the
parentheses is evaluated first. If the letter variable was set %', the expression would
evaluate like this:

while not (letter == 'X" or letter =="'0"):

L
while not (‘X' =="'X"or 'X' == '0Y):
while not (True or False):
while not (True):
while not True:

1

while False:

As you can see, if letter has the value 'X' or 'O’, then the loop's condition will be

160

10 - Tic Tac Toe
False and lets the program execution contil

29. #the first element in the tuple is the player's
let t er, the second is the computer's letter.

30. if letter =="'X";
31. return ['X', 'O]
32. else:

33. return ['O', 'X]

This function returns a list with two items. The first item (that is, the string at Didex
will be the player's letter, and the second item (that is, the string at index 1) will be the
computer's letter. This if-else statement chooses the appropriate list to return.

Deciding Who Goes First

35. def whoGoesFirst():

36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == 0:

38. return ‘computer'

39. else:

40. return ‘player'

The whoGoesFirst() function does a virtual coin flip to determine who goes first,
the computer or the player. Instead of flipping an actual coin, this code gets a random
number of either O or 1 by calling thendom.randint() function. If this function call
returns a 0, the whoGoesFirst() function returns the string ‘computer’ . Otherwise,
the function returns the string 'player'. The code that calls this function will use the
return value to know who will make the first move of the game.

Asking the Player to Play Again

42. def playAgain():

43. # This function returns True if the player wants to
play again, otherwise it returns False.

44. print('Do you want to play again? (yes or no)")

45. return input().lower().startswith('y")

The playAgain() function asks the player if they want to play another game. The
function returns True if the player types in 'yes' or 'YES' or'y' or anything that
begins with the letter Y. For any other response, the function returns False. The order of
the method calls on line 151 is important. The return value from the call itgptirit€)
function is a string that has itswer() method called on it. The lower() method
returns another string (the lowercase string) and that string fsartswith()
method called on it, passing the argument 'y".

161

There is no loop, becat we assume that if the user entered anything besides a
that begins with 'y', they want to stop playing. So, we only ask the player once.

Placing a mark on the Board

47. def makeMove(board, letter, move):
48. board[move] = letter

The makeMove() function is very simple and only one line. The parameters are a list
with ten strings named board, one of the player's letters (either 'X"'@’) named
letter, and a place on the board where that player wants to go (which is an integer from
1 to 9) namedmove.

But wait a second. You might think that this function doesn't do much. It seems to
change one of the items in the boaiést to the value in letter . But because this code is
in a function, the board variable will be forgotten when we exit this function and leave the
function's scope.

Actually, this is not the case. This is because lists are special when you pass them as
arguments to functions. This is because you pass a reference to the list and not the list itself.
Let's learn about the difference between lists and list references.

List References

Try entering the following into the shell:

>>> spam = 42

>>> cheese = spam
>>> spam = 100
>>> spam

100

>>> cheese

42

This makes sense from what we know so far. We assign 42 to the spam variable, and
then we copy the value spam and assign it to the variable cheese. When we later
change the value in spato 100, this doesn't affect the value in cheesd& his is because
spam and cheese are different variables that store different values.

But lists don't work this way. When you assign a list to a variable with the = sign, you
are actually assigning a reference to the listef@rence is a value that points to some bit
of data, and a list referenceis a value that points to a list. Here is some code that will
make this easier understand. Type this into the st

162

10 - Tic Tac Toe

>>>spam = [0, 1, 2, 3, 4, 5]
>>> cheese = spam

>>> cheese[1] = 'Hello!
>>> spam

[0, 'Hello!, 2, 3, 4, 5]

>>> cheese

[0, 'Hello!, 2, 3, 4, 5]

Notice that the line cheese = spam copies the list referencén spam tocheese,
instead of copying the list valueself. This is because the value stored in the spam
variable is a list referenceand not the list valudself. This means that the values stored in
both spam anccheese refer to the same list. There is only one list because the list was
not copied, the reference to the list was copied. So when you nob@iése in the
cheese[1] = 'Hello! line, you are modifying the same list that spam refers to.

This is why spam seems to have the same list value that cheese does.

Remember when you first learned about variables, | said that variables were like boxes

that contain values. List variables don't actually contain lists at all, they contain references
to lists. Here are some pictures that explain what happens in the code you just typed in:

@ spam =[0, 1, 2, 3, 4, 5]

1[[1 list+ value)
[0,1,2,3,4,5]

Reference

Figure 10-5: Variables do no store lists, but rather references to lists.

On the first line, the actual list is not contained in the spam variable but a reference to
the list. The lic itself is not stored in any variak

163

@ cheese = spam

) @ list value
[0,1,2,3,4,5]

Figure 10-6: Two variables store two references to the same list.

When you assign the reference in spgmtheese, the cheese variable contains a
copy of the reference in spam. Now batheese and spam refer to the same list.

@ cheese[1] = ‘Hello’

1 (a list+ value)
7 | [0, "Hello', 2, 3, 4, 5]

Figure 1(-7: Changing th list changes all variables with references to tha

164

10 - Tic Tac Toe
When you alte the list thaicheese refers to, the list thespam refers to is also chang:

because they are the same list. If you want s@auth cheese to store two different lists,
you have to create two different lists instead of copying a reference:

>>> spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]

In theabove example, spam and cheese have two different lists stored in them (even
though these lists are identical in content). Now if you modify one of the lists, it will not
affect the other because spam afteese have references to two different lists:

>>>spam = [0, 1, 2, 3, 4, 5]
>>> cheese = [0, 1, 2, 3, 4, 5]
>>> cheese[1] = 'Hello!

>>> spam

[0, 'Hello!, 2, 3, 4, 5]

>>> cheese

[0,1,2,3,4,5]

Figure 10-8 shows how the two references point to two different lists:

) @ list value)
[0, 'Hello’, 2, 3, 4, 5]

Reference

ARG list value)
10, 1.2, 3,4, 5]

Figure 1(-8: Two variable each storing references to two different |

165

Using List References in makeMove()

Let's go back to the makeMove() function:

47. def makeMove(board, letter, move):
48. board[move] = letter

When we pass a list value as the argument fobdlaed parameter, the function's local
variable is a copy of the reference, not a copy of the list itselflettee and move
parameters are copies of the string and integer values that we pass. Since they are copies, if
we modify letter or move in this function, the original variables we used when we
called makeMove() would not be modified. Only the copies would be modified.

But a copy of the reference still refers to the same list that the original reference refers to.
So if we make changes to boarah this function, the original list is modified. When we
exit the makeMove() function, the copy of the reference is forgotten along with the other
parameters. But since we were actually changing the original list, those changes remain
after we exit the function. This is how the makeMove() function modifies the list that a
reference of is passed.

Checking if the Player Has Won

50. defisWinner(bo, le):

51. # Given a board and a player's letter, this function
returns True if that player has won.

52. # We use bo instead of board and le instead of letter
so we don't have to type as much.

53. return ((bo[7] == le and bo[8] == le and bo[9] == le)
or # across the top

54. (bo[4] == le and bo[5] == le and bo[6] == le) or #
across the middle

55. (bo[1] == le and bo[2] == le and bo[3] == le) or #
across the bottom

56. (bo[7] == le and bo[4] == le and bo[1] == le) or #
down the left side

57. (bo[8] == le and bo[5] == le and bo[2] == le) or #
down the middle

58. (bo[9] == le and bo[6] == le and bo[3] == le) or #
down the right side

59. (bo[7] == le and bo[5] == le and bo[3] == le) or #
diagonal

60. (bo[9] == le and bo[5] == le and bo[1] == le)) #
diagonal

Lines 53 to 60 in the isWinner() function are actually one very long if statement. We
use bo and le for the board and letter parameters so that we have less to type in this

166

10 - Tic Tac Toe
function. (Thitis a trick programmers sometimes use to reduce the amount they |
type. Be sure to add a comment though, otherwise you may forgebavhatile are
supposed to mean.)

There are eight possible ways to win at Tic Tac Toe. First, have a line across the top,
middle, and bottom. Second, have a line down the left, middle, or right. And finally, have
either of the two diagonals. Note that each line of the condition checks if the three spaces
are equal to the letter provided (combined with the and operator) and we use the or
operator to combine the eight different ways to win. This means only one of the eight ways
must be true in order for us to say that the player who owns leteersithe winner.

Let's pretend thde is 'O' , and the board looks like this:

If the board looks like that, then bo must be equdt tp'O’, 'O’, 'O’, ’
XL X L,). Here is how the expression after the return
keyword on line 53 would evaluate:

Here is the expression as it is in the code:

53. return ((bo[7] == le and bo[8] == le and bo[9] == le) or
54. (bo[4] == le and bo[5] == le and bo[6] == le) or

55. (bo[1] == le and bo[2] == le and bo[3] ==le) or

56. (bo[7] == le and bo[4] == le and bo[1] ==le) or

57. (bo[8] == le and bo[5] == le and bo[2] == le) or

58. (bo[9] == le and bo[6] == le and bo[3] ==le) or

59. (bo[7] == le and bo[5] == le and bo[3] ==le) or

60. (bo[9] == le and bo[5] == le and bo[1] == le))

+

First Python will replace the variabt® with the value inside of it:

53. return ((X'=='0O'and''=='0"and ''=="'0") or
54, ('=='0O'and'X'=='O'and''=='0")or
55. (‘'O'=="'0"and 'O'=="'0"'and 'O' =="'0") or

167

168

53.

(X'=='0O"and''=='0"and 'O' =="'0'") or
('=='0"and 'X'=='0"and 'O' =='0'") or
('=='0O'and''=='0"and 'O'=="'0") or
(X'=='0"and 'X'=="0"and 'O' =="'0") or
('=='0'and 'X'=='0"and 'O' =="'0))

+

Next, Python will evaluate all those= comparisons inside the parentheses to a boolean value:

return ((False and False and False) or
(False and False and False) or

(True and True and True) or

(False and False and True) or

(False and False and True) or

(False and False and True) or

(False and False and True) or

(False and False and True))

¥

Then the Python interpreter will evaluate all those expressions inside the parentheses:

return ((False) or
(False) or

(True) or

(False) or
(False) or
(False) or
(False) or
(False))

{

Since now there is only one value inside the parentheses, we can get rid of them:

return (False or
False or

True or

False or

False or

False or

False or

False)

{

Now we evaluate the expression that is connecter by all tros@erators:

return (True)

¥

10 - Tic Tac Toe
Once again, we get rid of the parentheses, and we are left with one value: ;

53. return True

So given those values fbo andle , the expression would evaluate to True. Remember
that the value of le matters. lfie is 'O' and X has won the game, thsWinner()
would returnFalse.

Duplicating the Board Data

62. def getBoardCopy(board):

63. # Make a duplicate of the board list and return it
the duplicate.

64. dupeBoard =]

65.

66. foriin board:

67. dupeBoard.append(i)
68.

69. return dupeBoard

ThegetBoardCopy() function is here so that we can easily make a copy of a given
10-string list that represents a Tic Tac Toe board in our game. There are times that we will
want our Al algorithm to make temporary modifications to a temporary copy of the board
without changing the original board. In that case, we call this function to make a copy of the
board's list. The actual new list is created on line 64, with the blank list brfickets

Line 64 actually creates a brand new list and stores a reference to it in dupeBoard. But
the list stored imMupeBoard is just an empty list. Thefor loop will go through the board
parameter, appending a copy of the string values in the original board to our duplicate
board. Finally, after the loop, we will return the dupeBoard variable's reference to the
duplicate board. So you can see how the getBoardCopy(junction is building up a
copy of the original board and returning a reference to this new board, and not the original
one.

Checking if a Space on the Board is Free

71. def isSpaceFree(board, move):

72. # Return true if the passed move is free on the
passed board.

73. return board[move] ==""

This is a simple function that, given a Tic Tac Toe board and a possible move, will return
if that move is available or not. Remember that free spaces on our board lists are marked as
a single space strir

169

Letting the Player Enter Their Move

75. def getPlayerMove(board):

76. # Let the player type in his move.

77. move ="'

78. while move notin'123456 7 89.split() or not
isSpaceFree(board, int(move)):

79. print("What is your next move? (1-9)")

80. move = input()

81. return int(move)

The getPlayerMove() function asks the player to enter the number for the space
they wish to move. The function makes sure that they enter a space that is a valid space (an
integer 1 through 9). It also checks that the space that is not already taken, given the Tic
Tac Toe board passed to the function inlibard parameter.

The two lines of code inside the while loop simply ask the player to enter a number
from 1 to 9. The loop's condition will keep looping, that is, it will keep asking the player
for a space, as long as the condition is True. The condition is True if either of the
expressions on the laft right side of theor keyword is True.

The expression on the lafide checks if the move that the player entered is equal to '1',
'2','3', and so on up to '9' by creating a list with these strings (with the split()
method) and checking if move is in this list. '12 3456 7 8 9'.split()
evaluates to be the same as ['1', '2', '3', '4", '5', '6', '7", '8,
‘9", but it easier to type.

The expression on the rigbide checks if the move that the player entered is a free space
on the board. It checks this by calling the isSpaceFree() function we just wrote.
Remember that isSpaceFree() will return True if the move we pass is available on
the board. Note that isSpaceFree() expects an integer fomove, so we use the int()
function to evaluate an integer form of move.

We add the not operators to both sides so that the condition willrbe when both of
these requirements are unfulfilled. This will cause the loop to ask the player again and
again until they enter a proper move.

Finally, on line 81, we will return the integer form of whatever move the player entered.
Remember that input() returns a string, so we will want to use the int() function to
evaluate the string as an integer.

Short-Circuit Evaluation

You may have noticed there is a possible problem igetRlayerMove() function.
What if the player typed in 'X' or some other non-integer string? The move not in

170

10 - Tic Tac Toe
1234567 89.split() expression on the left side of or wa return

False as expected, and then we would evaluate the expression on the right side of the or
operdor. But when we pass 'X' (which would be the valuemmove) to the int()

function, int("X") would give us an error. It gives us this error because that()

function can only take strings of number characters, like '9"42’, not strings like 'X'

As an example of this kind of error, try entering this into the shell:

>>> int('42")
42
>>> int('X")

Traceback (most recent call last):
File "<pyshell#3>", line 1, in <module>
int("X")
ValueError: invalid literal for int() with base
10: X'

But when you play our Tic Tac Toe game and try entering 'X' in for your move, this
error doesn't happen. The reason is because the while loop's condition is being short-
circuited.

What short-circuiting means is that because the expression on the left side of the or
keyword (move notin'1 23456 7 8 9.split()) evaluates to True, the
Python interpreter knows that the entire expression will evaludteut It doesn't matter
if the expression on the right side of threkeyword evaluates tdrue or False, because
only one value on the side of the or operator needs torbe.

Think about it: The expression True or False evaluates to True and the expression
True or True also evaluates to True. If the value on the left side is True, it doesn't
matter what the value is on the right side. So Python stops checking the rest of the
expression and doesn't even bother evaluatingahsSpaceFree(board, int
(move)) part. This means the int() and the isSpaceFree() functions are never
called.

This works out well for us, because if the expression on the right side is True then
move is not a string in number form. That would caund@ to give us an error. The
only timesmove notin'12 3456 7 8 9.split() evaluates to False
are when move is not a single-digit string. In that case, the call to int() would not give
us an error.

An Example of Short-Circuit Evaluation

Here's a short program that gives a good example of short-circuiting. Open a new file in

the IDLE editor and type in tt program, save it eruefalsefizz.py, then press F5 to run
171

Don't ad(the numbers down the left side of the program, those just appear in thi
to make the program's explanation easier to understand. The function calls awetibkl
function calls that are evaluated.

truefalsefizz.py

This code can be downloaded from http://inventwithpython.com/truefalsefizz.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

. def TrueFizz(message):
print(message)
return True

1

2

3

4.

5. def FalseFizz(message):
6 print(message)

7 return False

8.

9. if FalseFizz('Cats') or TrueFizz('Dogs"):
10. print('Step 1)

11.

12. if TrueFizz('Hello") or TrueFizz('Goodbye'):

13. print('Step 2"

14.

15. if TrueFizz('Spam’) and TrueFizz('Cheese’):
16. print('Step 3"

17.

18. if FalseFizz('Red') and TrueFizz('Blue'):
19. print('Step 4

When you run this program, you can see the output (the letters on the left side have been
added to make the output's explanation easier to understand):

. Cats

. Dogs
Step 1
Hello

. Step 2

. Spam
G. Cheese
H. Step 3
I. Red

mmoOw>»

172

10 - Tic Tac Toe
This smal program has two functionTrueFizz() andFalseFizz() . TrueFizz

() wi Il display a message and return the value Truile FalseFizz() will display a
message and return the value Fals@&his will help us determine when these functions are
being called, or when these functions are being skipped due to short-circuiting.

The First if Statement (Cats and Dogs)

The first if statement on line 9 in our small program will first evaluate TrueFizz().
We know ths happens becau€ats is printed to the screen (on line A in the output). The
entire expression could still be True if the expression to the right of the or keyword is
True. So the call TrueFizz('Dogs') one line 9 is evaluated, Dogs is printed to the
screen (on line B in the output) and True returned. On line 9, the if statement's
condition evaluates to False or True, which in turn evaluates to True. Step 1 is then
printed to the screen. No short-circuiting took place for this expression's evaluation.

The Second if Statement (Hello and Goodbye)

The second if statement on line 12 also has short-circuiting. This is because when we call
TrueFizz('Hello") on line 12, it printsHello (see line D in the output) and returns
True. Because it doesn't matter what is on the right side of the or keyword, the Python
interpreter doesn't call TrueFizz('Goodbye'). You can tell it is not called because
Goodbye is not printed to the screen. THestatement's condition isTrue, so Step 2 is
printed to the screen on line E.

The Third if Statement (Spam and Cheese)

The third if statement on line 15 does not have short-circuiting. The calrteFizz
(‘'Spam’) returns True , but we do not know if the entire conditionTisie or False
because of the and operator. So Python will GalieFizz('Cheese'), which prints
Cheese and returns True. The if statement's condition is evaluatedToue and
True, which in turn evaluates to True. Because the condition is True, Step 3 is printed
to the screen on line H.

The Fourth if Statement (Red and Blue)

The fourth if statenent on line 18 does have short-circuiting. The FalseFizz
(Red’) call prints Red on line | in the output and returns False. Because the left side
of the and keyword id-alse, it does not matter if the right side is True or False , the
condition will evaluate to False anyway. S@rueFizz('Blue') is not called and
Blue does not appear on the screen. Because thstditement's condition evaluated to
False, Step 4 is also not printed to the screen.

Short-circuiting can happen for any expression that includes the Boolean opandtors
and or. It is important to remember that this can happen; otherwise you may find that some

function calls in the expression are never called and you will not unde why.
173

How the Code Works: Lines 83to 94

Choosing a Move from a List of Moves

83. def chooseRandomMoveFromList(board, movesList):

84. # Returns a valid move from the passed list on the
passed board.

85. # Returns None if there is no valid move.

86. possibleMoves =]

87. foriin movesList:

88. if isSpaceFree(board, i):

89. possibleMoves.append(i)

The chooseRandomMoveFromList() function will be of use to us when we are
implementing the code for our Al. The first paraméteard is the 10-string list that
represents a Tic Tac Toe board. The second parameter movesList is a list of integers that
represent possible moves. For example, if movesList is [1, 3, 7, 9], that means
we should return the number for one of the corner spaces on the board.

The chooseRandomMoveFromList() function will then choose one of those moves
from the possibleMoves list. It also makes sure that the move that it chooses is not
already taken. To do this, we create a blank list and assign it to possibleMovéd$e
for loop will go through the list of moves passed to this functiommovesList. If that
move is available (which we figure out with a call to isSpaceFree()), then we add it to
possibleMoves with the append() method.

91. if len(possibleMoves) != 0:

92. return random.choice(possibleMoves)
93. else:
94, return None

At this point, the possibleMoves list has all of the moves that were in movesList
that are also free spaces on the board represented by board. If the list is not empty, then
there is at least one possible move that can be made on the board.

This list might be empty. For example, if movesListwas [1, 3, 7, 9] but the
board represented by the boardarameter had all the corner spaces already taken, the
possibleMoves list would have been empty.

If possibleMoves is empty, then len(possibleMoves) will evaluate to 0 and
the code in the else-block will execute. Notice that it returns something called None.

174

10 - Tic Tac Toe

The None Value

None is a special value that you can assign to a variableNdhe vaue represents the
lack of a value. Nonas the only value of the data type NoneType. (Just like the boolean
data type has only two values, the NoneType data type has only oneNatee) It can be
very useful to use the None value when you have not set a variables value yet. For
example, say you had a variable named quizAnswarhich holds the user's answer to
some True-False pop quiz question. You couladjgetAnswer to None if the user
skipped the question or did not answer it. Using None would be better because if you set it
to True or False before assigning the value of the user's answer, it may look like the user
gave an answer the question even though they didn't.

Calls to functions that do not return anything (that is, they exit by reaching the end of the

function and not from a return statement) will evaluate to None.Ntme value is written
without quotes and with a capital "N" and lowercase "one".

How the Code Works: Lines 96 to 187

Creating the Computer's Artificial Intelligence

96. def getComputerMove(board, computerLetter):
97. # Given a board and the computer's letter, determine
where to move and return that move.
98. if computerLetter =="X":
99. playerLetter = 'O’
100. else:
101. playerLetter = 'X'

The getComputerMove() function is where our Al will be coded. The parameters
are a Tic Tac Toe board (in the board parameter) and which letter the computer is (either
X' or 'O"). The first few lines simply assign the other letter to a variable named
playerLetter. This lets us use the same code, no matter who is X and who is O. This
function will return the integer that represents which space the computer will move.

Remember how our algorithm works:

First, see if there is a move the computer can make that will win the game. If there is,
take that move. Otherwise, go to the second step.

Second, see if there is a move the player can make that will cause the computer to lose
the game. If there is, we should move there to block the player. Otherwise, go to the third
step.

Third, check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want

to take a corner piece instead of the center or i piece.) If no corner piece is free, tr
175

go to the fourth ste
Fourth, check if the center is free. If so, move there. If it isn't, then go to the fifth step.

Fifth, move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps,
because if we have reached this step then the side spaces are the only spaces left.

The Computer Checks if it Can Win in One Move

103. # Here is our algorithm for our Tic Tac Toe Al:
104. # First, check if we can win in the next move
105. foriinrange(d, 10):

106. copy = getBoardCopy(board)

107. if isSpaceFree(copy, i):

108. makeMove(copy, computerLetter, i)
109. if isWinner(copy, computerLetter):
110. return i

More than anything, if the computer can win in the next move, the computer should
immediately make that winning move. We will do this by trying each of the nine spaces on
the board with a for loop. The first line in the loop makes a copy of the board list. We
want to make a move on the copy of the board, and then see if that move results in the
computer winning. We don't want to modify the original Tic Tac Toe board, which is why
we make a call to getBoardCopy() . We check if the space we will move is free, and if
so, we move on that space and see if this results in winning. If it does, we return that
space's integer.

If moving on none of the spaces results in winning, then the loop will finally end and we
move on to line 112.

The Computer Checks if the Player Can Win in One Move

112. # Check if the player could win on his next move, and
bl ock them.

113. foriinrange(d, 10):

114. copy = getBoardCopy(board)

115. if isSpaceFree(copy, i):

116. makeMove(copy, playerLetter, i)

117. if isWinner(copy, playerLetter):

118. return i

At this point, we know we cannot win in one move. So we want to make sure the human
player cannot win in one more move. The code is very similar, except on the copy of the
board, we place the player's letter before calling the isWinner() function. If there is a
position the player can move that will let them win, the computer should move there to
block that move

176

10 - Tic Tac Toe
If the human player cannot win in one more movefor loop will eventually stop an

execution continues on to line 120.

Checking the Corner, Center, and Side Spaces (in that Or der)

120. # Try to take one of the corners, if they are free.

121. move = chooseRandomMoveFromList(board, [1, 3, 7, 9])
122. if move != None:
123. return move

Our call to chooseRandomMoveFromList() with the list of[1, 3, 7, 9] will
ensure that it returns the integer for one of the corner spaces. (Remember, the corner spaces
are represented by the integers 173and 9.) If all the corner spaces are taken, our
chooseRandomMoveFromList() function will return the None value. In that case,
we will move on to line 125.

125. # Try to take the center, if it is free.
126. if isSpaceFree(board, 5):
127. return 5

If none of the corners are available, we will try to move on the center space if it is free. If
the center space is not free, the execution moves on to line 129.

129. # Move on one of the sides.
130. return chooseRandomMoveFromList(board, [2, 4, 6, 8])

This code also makes a call to chooseRandomMoveFromList() , except we pass it
a list of the side spacelg(4, 6, 8]). We know that this function will not return
None, because the side spaces are the only spaces we have not yet checked. This is the end
of the getComputerMove() function and our Al algorithm.

Checking if the Board is Full

132. defisBoardFull(board):

133. # Return True if every space on the board has been
taken. Otherwise return False.

134. foriinrange(d, 10):

135. if isSpaceFree(board, i):

136. return False

137. return True

The last function we will write issBoardFull(), which returns True if the 10-
string list board argument it was passed haX'aor 'O’ in every index (except for
177

index0, which is just a placeholder that we ignc If there is at least one space
board that is set to a single space ' ' then it will return False.

Thefor loop will let us check spaces 1 through 9 on the Tic Tac Toe board. (Remember
that range(1, 10) will make the for loop iterate over the integers 1, 2, 3, 4,5, 6, 7,
8, and 9.) As soon as it finds a free space in the board (that is, when isSpaceFree
(board, i) returns True), the isBoardFull() function will return False.

If execution manages to go through every iteration of the loop, we will know that none of
the spaces are free. So at that point, we will execute return True

The Start of the Game

|| 140. print("'Welcome to Tic Tac Toel!") ||

Line 140 is the first line that isn't inside of a function, so it is the first line of code that is
executed when we run this program.

142. while True:
143. # Reset the board
144, theBoard =["* 10

This while loop has True for the condition, so that means we will keep looping in this
loop until we encounter a break statement. Line 144 sets up the main Tic Tac Toe board
that we will use, named theBoard. It is a 10-string list, where each string is a single
space ' . Remember the little trlck usmg the multlpllcatlon operator with a list to replicate
it: [1* 10 That evaluates to [' ', LT
", butis shorter for us to type [[]*10.

Deciding the Player's Mark and Who Goes First

|| 145. playerLetter, computerLetter = inputPlayerLetter() ||

TheinputPlayerLetter() function lets the player type in whether they want to be
X or O. The function returns a 2-string list, eitfig¢, 'O'] or ['O’, 'X']. We use
the multiple assignment trick here that we learned in the Hangman chapter. If

inputPlayerLetter() returns ['X', 'O, then playerLetter is set to 'X' and
computerLetter is set to 'O'. If inputPlayerLetter() returng'O’, 'X'],
then playerLetter is set to 'O and computerLetter is setto 'X'.

146. turn = whoGoesFirst()
147. print(The ' + turn + " will go first.")

178

10 - Tic Tac Toe
||148. gamelsPlaying = True

The whoGoesFirst() function randomly decides who goes first, and returns either the
string 'player’ or the string ‘computer'. On line 147, we tell the player who will go
first. The gamelsPlayer variable is what we will use to keep track of whether the game
has been won, lost, tied or if it is the other player's turn.

Running the Player's Turn

||150. while gamelsPlaying: ||

This is a loop that will keep going back and forth between the player's turn and the
compuer's turn, as long agamelsPlaying is setto True.

151. if turn == 'player"

152. # Player's turn.

153. drawBoard(theBoard)

154. move = getPlayerMove(theBoard)

155. makeMove(theBoard, playerLetter, move)

The turn variable was originally set by whoGoesFirst(). It is either set tdplayer'
or'‘computer’ . If turn contains the string ‘computer’, then the condition is False
and execution will jump down to line 169.

The first thing we do when it is the player's turn (according to the flow chart we drew at
the beginning of this chapter) is show the board to the player. CallimgyatvBoard()
and passing thineBoard variable will print the board on the screen. We then let the
player type in his move by calling ogetPlayerMove() function, and set the move on
the board by calling ounakeMove() function.

157. if isWinner(theBoard, playerLetter):

158. drawBoard(theBoard)

159. print('Hooray! You have won the game!’)
160. gamelsPlaying = False

Now that the player has made his move, our program should check if they have won the
gamewith this move. If thesWinner() function returns True, we should show them the
winning board (the previous call thawBoard() shows the board beforthey made the
winning move) and print a message telling them they have won.

Then we set gamelsPlaying to False so that execution does not continue on to the
computer's turi

179

161. else:

162. if isBoardFull(theBoard):
163. drawBoard(theBoard)
164. print(The game is a tie!")
165. break

If the player did not win with his last move, then maybe his last move filled up the entire
board and we now have a tie. In this else-block, we check if the board is full with a call to
the isBoardFull() function. If it returns True, then we should draw the board by
calling drawBoard() and tell the player a tie has occurred. Thereak statement will
break us out of the while loop we are in and jump down to line 186.

Running the Computer's Turn

167. turn = ‘computer’

166. else: “

If the player has not won or tied the game, then we should just set thevamable to
‘computer’ so that when this while loop loops back to the start it will execute the
code for the computer's turn.

|| 169. else: ||

If the turn variable was not set to 'player’ for the condition on line 151, then we
know it is the computer's turn and the code in this else-block will execute. This code is very
similar to the code for the player's turn, except the computer does not need the board
printed on the screen so we skip calling the drawBoard(unction.

170. # Computer's turn.

171. move = getComputerMove(theBoard,
computerlLetter)

172. makeMove(theBoard, computerLetter, move)

This code is almost identical to the code for the player's turn on line 154 and 155.

174. if isWinner(theBoard, computerLetter):

175. drawBoard(theBoard)

176. print("The computer has beaten you! You
lose.")

177. gamelsPlaying = False

180

10 - Tic Tac Toe
We want to check if the computer won with its move. The reason we ¢
drawBoard() here is because the player will want to see what move the computer made
to win the game. We then set gamelsPlaying to False so that the game does not
continue. Notice that lines 174 to 177 are almost identical to lines 157 to 160.

178. else:

179. if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print(The game is a tie!")
182. break

These lines of code are identical to the code on lines 162 to 165. The only difference is
this is a check for a tied game after the computer has moved.

183. else:
184. turn = 'player’

If the game is neither won nor tied, it then becomes the player's turn. There are no more
lines of code inside the while loop, so execution would jump back to the while
statement on line 150.

187. break

186. if not playAgain(): “

These lines of code are located immediately after the while-block started by the while
statement on line 150. Remember, we would only exit out ofathié loop if it's
condition (the gamelsPlaying variable) was False. gamelsPlaying is set to
False when the game has ended, so at this point we are going to ask the player if they
want to play again.

Remember, when we evaluate the condition in this if statement, we call the
playAgain() function which will let the user type in if they want to play or not.
playAgain() will return True if the player typed something that began with a'y" like
'ves' or 'y'. Otherwise playAgain() will return False.

If playAgain() returns False, then the if statement's condition iSrue (because of
the not operator that reverses the Boolean value) and we execute the break statement. That
breaks us out of the while loop that was started on line 142. But there are no more lines of
code after that whi-block, so the progra terminates

181

Summary: Creating Game-Playing Atrtificial
Intelligences

Creating a program that can play a game comes down to carefully considering all the
possible situations the Al can be in and how it should respond in each of those situations.
Our Tic Tac Toe Al is fairly simple because there are not many possible moves in Tic Tac
Toe compared to a game like chess or checkers.

Our Al simply blocks the players move if the player is about to win. If the player is not
about to win, it checks if any possible move can allow itself to win. Then the Al simply
chooses any available corner space, then the center space, then the side spaces. This is a
simple algorithm for the computer to follow.

The key to implementing our Al is by making copies of the board data and simulating
moves on the copy. That way, the Al code can see if a move will result in a win or loss.
Then the Al can make that move on the real board. This type of simulation is very effective
at predicting what is a good move or

182

Chapter] I

Bagels

Topics Covered In This Chapter:

Hard-coding
Augmented Assignment Operatorss, -=, *=, /=
The random.shuffle() Function

The sort() List Method
The join() List Method

String Interpolation (also called String Formatting)
Conversion Specifier %s
Nested Loops

In this chapter you will learn a few new methods and functions that come with Python.
You will also learn about augmented assignment operators and string interpolation. These
concepts don't let you do anything you couldn't do before, but they are nice shortcuts that
make typing your code easier.

Bagels is a simple game you can play with a friend. Your friend thinks up a random 3-
digit number with no repeating digits, and you try to guess what the number is. After each
guess, your friend gives you clues on how close your guess was. If the friend tells you
"bagels”, that means that none of the three digits you guessed is in the secret number. If
your friend tells you "pico", then one of the digits is in the secret number, but your guess
has the digit in the wrong place. If your friend tells you "fermi", then your guess has a
correct digit in the correct place. Of course, even if you get a pico or fermi clue, you still
don't know which digit in your guess is the correct one.

You can also get multiple clues after each guess. Say the secret number is 456, and your
guess is 546. The clue you get from your friend wou "fermi pico pico" because ot
183

digit is correct and in the correct place digit 6), and two digits are in the sec
number but in the wrong place (the digits 4 and 5).

Sample Run

| am thinking of a 3-digit number. Try to guess what i t is.

Here are some clues:

When | say: That means:
Pico One digit is correct but in the wrong position.
Fermi One digit is correct and in the right position.
Bagels No digit is correct.

I have thought up a number. You have 10 guesses to get it.

Guess #1:

123

Fermi

Guess #2:

453

Pico

Guess #3:

425

Fermi

Guess #4:

326

Bagels

Guess #5:

489

Bagels

Guess #6:

075

Fermi Fermi

Guess #7:

015

Fermi Pico

Guess #8:

175

You got it!

Do you want to play again? (yes or no)

no

Bagel's Source Code

bagels.py
This code can be downloaded from http://inventwithpython.com/bagels.py
If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. import random

2. def getSecretNum(numbDigits):

3. # Returns a string that is numDigits long, made up of

184

-
Cox N U~

11

12.

13.
14.

unigue random digits.
numbers = list(range(10))
random.shuffle(hnumbers)
secretNum ="
for i in range(numbDigits):
secretNum += str(numbersi])
return secretNum

. def getClues(guess, secretNum):
Returns a string with the pico, fermi, bagels clues
to the user.
if guess == secretNum:
return "You got it!"

15.

16.

clue =]

17.

18.
19.
20.
21.
22.
23.
24.

for i in range(len(guess)):
if guess[i] == secretNum([i:
clue.append(‘'Fermi)
elif guessJi] in secretNum:
clue.append('Pico’)
if len(clue) == 0:
return 'Bagels’

25.

26.
27.

clue.sort()
return ' '.join(clue)

28.

29

30.

31.
32.

. def isOnlyDigits(num):
Returns True if num is a string made up only of
digits. Otherwise returns False.
if num ==":
return False

33.

34.
35.
36.

for i in num:
ifinotin'0123456 78 9.split():
return False

37.

38.

return True

39.

40

41.

42.
43.

. def playAgain():
This function returns True if the player wants to
play again, otherwise it returns False.
print('Do you want to play again? (yes or no)’)
return input().lower().startswith('y")

44,

45.
46.

NUMDIGITS =3
MAXGUESS = 10

47.

48

49
50
51

. print('l am thinking of a %s-digit number. Try to guess
what it is.' % (NUMDIGITS))

. print('Here are some clues:’)

. print('When | say: That means:’)

. print(" Pico One digit is correct but in the
wrong position.")

11 - Bagels

185

52. print(" Fermi One digit is correct and in the
ri ght position.")

53. print(" Bagels No digit is correct.”)

54,

55. while True:

56. secretNum = getSecretNum(NUMDIGITS)

57. print(l have thought up a number. You have %s guesses
to get it.' % (MAXGUESS))

58.

59. numGuesses = 1

60. while numGuesses <= MAXGUESS:

61. guess ="

62. while len(guess) '= NUMDIGITS or not isOnlyDigits
(guess):

63. print('Guess #%s: ' % (numGuesses))

64. guess = input()

65.

66. clue = getClues(guess, secretNum)

67. print(clue)

68. numGuesses +=1

69.

70. if guess == secretNum:

71. break

72. if numGuesses > MAXGUESS:

73. print("You ran out of guesses. The answer was
%s." % (secretNum))

74.

75. if not playAgain():

76. break

Designing the Program

Here is a flow chart for this program. The flow chart describes the basic events of what
happens in th game, and in what order they can hap

186

11 - Bagels

START Mo 1o
_.} play ﬂg{la’n.
Genergte seCret T
number.
Player has
';' lost+.
See if player
hos run out

of quesses.

R

Ge+ plavyer's
3uE 53,

Player has
Lo,

END

LTEH plaver

Clues.

Therement
guezv.s Count,

Figure 11-1: Flow chart for the Bagels game.

And here is the source code for our game. Start a new file and type the code in, and then
save the file as bagels.pyWe will design our game so that it is very easy to change the size
of the secret number. It can be 3 digits or 5 digits or 30 digits. We will do this by using a
constant variable named NUMDIGITS instead of hard-coding the integer 3 into our source
code.

Hard-coding means writing a program in a way that it changing the behavior of the
program requires changing a lot of the source code. For example, we could hard-code a
name into a print() function call like: print('Hello, Albert’). Or we could
use this line: print('Hello, ' + name) which would let us change the name that is
printed by changing the name variablkile the program is running.

How the Code Works: Lines 1to 9

At the start of the program we import ttemdom module and also create a function for
generating a random secret number for the player to guess. The process of creating this
number isn't hard, and also guarantees that it on unique digits in i

187

|| 1. import random ||

This game imports the random module so we can use the module's random number
functions.

Shuffling a Unique Set of Digits

2. def getSecretNum(numDigits):

3. # Returns a string that is numDigits long, made up of
unique random digits.

4. numbers = list(range(10))

5 random.shuffle(hnumbers)

Ouir first function is namedetSecretNum(), which will generate the random secret
number. Instead of having the code only produce 3-digit numbers, we use a parameter
named numbDigits to tell us how many digits the secret number should have. (This way,
we can make the game produce secret numbers with four or six digits, for example, just by
passing 4 or 6 as numDigits .)

You may have noticed that the return value of our cathbge() was in turn passed to
a function called list(). The list() function returns a list value of the value passed to
it, much like the str() function returns a string form or the int() function returns an
integer form. The reason we do this is because the range() function technically does not
return a list but something called an iterator object. Iterators are a topic that you don't need
to know at this point, so they aren't covered in this book.

Just about every time we use thege() function itis in a for loop. Iterators are fine
to use in for loops (just like lists are), but if we ever want to store a list of integers in a
variable, be sure to convert the return value of range{p a list with the list()
function first. (Just like we do on line 4.)

The random shuf fl e() Function

First, we create a list of intege®ddo 9 by cdling list(range(10)) and store a
reference to this list in numbers. Then we call a function in the random module named
shuffle(). The only parameter to random.shuffle() is a reference to a list. The
shuffle() function will randomly change the order of all the items in the list.

Notice that random.shuffle() does not return a value. It changes the list you pass it
"in place" (just like our makeMove() function in the Tic Tac Toe chapter modified the list
it was passed in place, rather than return a new list with the change). It would actually be
incorrect to write numbers = random.shuffle(numbers)

188

11 - Bagels
Try experimenting with thrandom.shuffle() function by entering the followin
code into the interactive shell:

>>> import random

>>> gpam = range(list(10))
>>> print(spam)
[0,1,2,3,4,5,6,7,8,9]
>>> random.shuffle(spam)
>>> print(spam)
[1,2,5,9,4,7,0, 3,6, 8]
>>> random.shuffle(spam)
>>> print(spam)
[3,0,5,9,6,8,2,4,1,7]
>>> random.shuffle(spam)
>>> print(spam)
[9,8,3,5,4,7,1, 2,0, 6]
>>>

Every time you pass a list referenceandom.shuffle(), the list it references has
all the same items but in a different order. The reason we do this is because we want the
secret number to have unique values. The Bagels game is much more fun if you don't have
duplicate numbers in the secret number, such as '244'383'.

Getting the Secret Number from the Shuffled Digits

6 secretNum ="

7 for i in range(numDigits):

8. secretNum += str(numbersii])
9. return secretNum

The secret number will be a string of the first three digits (because we'll pass 3 for the
numbDigits parameter) of the shuffled list of integers. For example, if the shuffled list is
[9,8,3,5,4,7,1, 2,0, 6] then we want the string returned by getSecretNumt be
'983'.

The secretNum variable starts out as a blank string. We then loop a number of times
equal to the integer value in numDigits On each iteration through the loop, a new
integer is pulled from the shuffled list, converted to a string, and concatenated to the end of
secretNum. So if numDigits is 3, the loop will iterate three times and three random
digits will be concatenated as strings.

For example, if numbersrefers to the list[9, 8, 3,5, 4, 7, 1, 2, 0, 6] ,
then on the first iteration, numbers[0] (that is, 9) will be passed &ir(), which in
turn returns '9" which is concatenated to the end of secretNumOn the second iteration,

189

the same happens winumbers[1l] (thatis,8) and on the thir iteration the sam
happens with numbers[2] (that is, 3). The final value oSecretNum t hat is returned is
'983..

You may notice that secretNumin this function is a string, not an integer. This may
seem odd, but remember that our secret number could be something like '012". If we
stored this as an integer, it would be 12 (without the leading zero) which would make it
harder to work with in our program.

Augmented Assignment Operators

The += operator on line 8 is new. This is one of the augmented assignment operators.

Normally, if you wanted to add or concatenate a value to a variable, you would use code
that looked like this:

spam =42

spam = spam + 10
cheese = 'Hello'

cheese = cheese + 'world!

After running the above code, spam would have the valuand cheese would have
the value 'Hello world" . The augmented assignment operators are a shortcut that

frees you from retyping the variable name. The following code does the exact same thing as
the above code:

spam =42

spam += 10 # Same as spam = spam + 10
cheese = 'Hello'

cheese +='world!" # Same as cheese = cheese +
'‘world!

There are other augmented assignment operators. -= will subtract a value from an
integer. *= will multiply the variable by a value. /= will divide a variable by a value.
Notice that these augmented assignment operators do the same math operations,as the
and / operators. Augmented assignment operators are a neat shortcut.

How the Code Works: Lines 11 to 24

We also need a way of figuring out which clues to show to the player.

11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bagels clues

190

11 - Bagels

to the user.
13. if guess == secretNum:
14. return "You got it!"

The getClues() function will return a string with the fermi, pico, and bagels clues,
dependng on vhat it is passed for thguess and secretNum parameters. The most
obvious and easiest step is to check if the guess is the exact same as the secret number. In
that case, we can just retulkfou got it!"

16. clue =]

17.

18. foriin range(len(guess)):

19. if guess[i] == secretNum([il:
20. clue.append(‘Fermi’)
21. elif guessJi] in secretNum:
22. clue.append('Pico’)

If the guess is not the exact same as the secret number, we need to figure out what clues to
give the player. First we'll set up a list namelde, which we will add the strings
'Fermi" and 'Pico’ as needed. We will combine the strings in this list into a single
string to return.

We do this by looping through each possible indeguess and secretNum (they bott
are the same size). We will assume that guess ardretNum ar e the same size. As the
value ofi changes fromO to 1 to 2, and so on, th# statement checks if the first, second,
third, etc. letter of guess is the same as the number in the same position in secretNum. If
so, we will add a strinFermi’ to clue.

If that condition is False we will check if the number at thth position in guess
exists anywhere igecretNum. If this condition is True we know that the number is
somewhere in the secret number but not in the same position. This is why we add the
'Pico’ to clue .

23. iflen(clue) == 0:
24. return 'Bagels’

If we go through the entire for loop above and never add anything to the clue list, then
we knowthat there are no correct digits at alguess. In this case, we should just return
the stringBagels' as our only clue.

191

The sort () List Method

|| 26. clue.sort() ||

Lists have a method namedrt() that rearranges the items in the list to be in
alphabetical order. Try entering the following into the interactive shell:

>>>spam =[5, 3, 4, 1, 2]
>>> spam.sort()

>>> spam

[1,2,3,4,5]

Notice that the sort() method does not return a sorted list, but rather just sorts the list
it is called on "in place". This is much like how the reverse() method works. You
would never want to use this line of code: return spam.sort() because that would
return the value None (which is whaort() returns). Instead you would want a separate
line spam.sort() and then the line return spam.

The reason we want to sort the clue list is because we might return extra clues that we
did not intend based on the order of the clueslué referenced the list['Pico’,
'Fermi’, 'Pico’], then that would tell us that the center digit of our guess is in the
correct position. Since the other two clues are both Pico, then we know that all we have to
do is swap the first and third digit and we have the secret number. But if the clues are
always sorted in alphabetical order, the player can't be sure which number the Fermi clue
refers to.

The j oi n() String Method

|| 27. return''join(clue) ||

Thejoin() string method returns a string of each item in the list argument joined
together. The string that the method is called on (on line 27, this is a single' §pace,
appears in between each item in the list. So the string that is returned on line 27 is each
string in clue combined together with a single space in between each string.

For an example, enter the following into the interactive shell:

i >>>'x"join(['hello’, ‘world)
i 'helloxworld'
i >>>"'ABCDEF".join(['x', 'y", ')
'XABCDEFyYABCDEFZ'
192

| 11 - Bagels
i >>> " join(['My', 'name’, 'is', 'Zophie']) E
. 'My name is Zophie'

How the Code Works: Lines 29 to 53

We need a couple more functions for our game to use. The first is a function that will tell
us if the guess that the player entered is a valid integer. Remember that the input()
function returns a string of whatever the player typed in. If the player enters in anything but
numbers for their guess, we want to ask the player again for a proper guess.

The second function is something we've seen before in previous games. We want a

function that will ask the player if they want to play the game again and from the player's
response, figure out if it was a Yes or No answer.

Checking if a String Only has Numbers

29. def isOnlyDigits(num):

30. # Returns True if num is a string made up only of
digits. Otherwise returns False.

31. ifnum==";

32. return False

TheisOnlyDigits() is a small function that will help us determine if the player
entered a guess that was only made up of numbers. To do this, we will check each
individual letter in the string named num and make sure it is a number.

Line 31 does a quick check to see if we were sent the blank string, and if so, we return
False.

34. for i in num:

35. ifinotin'0123456 78 9.split():
36. return False
37.

38. return True

We use a for loop on the string num. The value of i will have a single character from
the numstring on each iteration. Inside the for-block, we check if i does not exist in the list
returned by0 12 345 6 7 8 9'.split(). If it doesn't, we know that there is
a character in num that is something besides a number. In that case, we should return the
valueFalse.

If execution continues past the foloop, then we know that every character in num is a
number because we did not return out of the function. In that case, we return the value
True.

193

Finding out if the Player Wants to Play Again

40. def playAgain():

41. # This function returns True if the player wants to
play again, otherwise it returns False.

42. print('Do you want to play again? (yes or no)")

43. return input().lower().startswith('y")

The playAgain() function is the same one we used in Hangman and Tic Tac Toe.
The long expression on line 43 will evaluate to either Trud=atse. The return value
from the call to the input() function is a string that has itdower() method called on
it. The lower() method returns another string (the lowercase string) and that string has its
startswith() method called on it, passing the argument 'y'.

The Start of the Game

45. NUMDIGITS =3

46. MAXGUESS =10

47.

48. print('l am thinking of a %s-digit number. Try to guess
what it is.' % (NUMDIGITS))

49. print('Here are some clues:")

50. print('When | say: That means:')

51. print(" Pico One digit is correct but in the
wrong position.")

52. print(" Fermi One digit is correct and in the
right position.")

53. print(" Bagels No digit is correct.")

This is the actual start of the program. Instead of hard-coding three digits as the size of
the secret number, we will use the constant varidhI®DIGITS. And instead of hard-
coding a maximum of ten guesses that the player can make, we will use the constant
variable MAXGUESS. (This is because if we increase the number of digits the secret number
has, we also might want to give the player more guesses. We put the variable names in all
capitals to show they are meant to be constant.)

The print() function call will tell the player the rules of the game and what the Pico,
Fermi, and Bagels clues mean. Line 48lat() call has % (NUMDIGITS) added to
the end and %s inside the string. This is a technique know as string interpolation.

String Interpolation

String interpolation is another shortcut, like augmented assignment operators. Normally,
if you want to use the string values inside variables in another string, you have to use the +
concatenation operat

194

11 - Bagels

>>> name = 'Alice’

>>> event = 'party’

>>> where = 'the pool'

>>> when = 'Saturday’

>>> time = '6:00pm’

>>> print('Hello, ' + name + '. Will you go to the
"+event+'at'+ where +'this'+ when +'
at'+time +'?")

Hello, Alice. Will you go to the party at the pool

this Saturday at 6:00pm?
>>>

As you can see, it can be very hard to type a line that concatenates several strings
together. Instead, you can use string interpolationwhich lets you put placeholders like
%s (these placeholders are called conversion specifiejsand then put all the variable
names at the end. Ea#bs is replaced with the value in the variable at the end of the line.
For example, the following code does the same thing as the above code:

name = 'Alice’

event = 'party’

where = 'the pool'

when = 'Saturday’

time = '6:00pm’

print("Hello, %s. Will you go to the %s at %s this

%s at %s?' % (name, event, where, when, time))

Hello, Alice. Will you go to the party at the pool
this Saturday at 6:00pm?

>>>

String interpolation can make your code much easier to type and read, rather than using
several + concatenation operators.

The final line has the print() call with a string with conversion specifiers, followed
by the % sign, followed by a set of parentheses with the variables in them. The first
variable name will be used for the first %s, the second variable with the sgeoadd so
on. The Python interpreter will give you an error if you do not have the same number of %s
conversion specifiers as you have variables.

Another benefit of using string interpolation instead of string concatenation is that
interpolation works with any data type, not just strings. All values are automatically
converted to the string data type. (This is what thessrstands for.) If you typed this
code into the shell, you'd get an er

195

>>> gpam = 42
>>> print('Spam =="+ spam)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str
implicitly
>>>

You get this error because string concatenation can only combine two stringpaand
is an integer. You would have to remember to put str(spamh there instead. But with
string interpolation, you can have any data type. Try entering this into the shell:

>>> gpam = 42

>>> print('Spam == %s' % (spam))
Spam == 42

>>>

Asyou can see, using string interpolation instead of string concatenation is much easier
because you don't have to worry about the data type of the variable. Also, string
interpolation can be done on any strings, not just strings ugehi() function calls.

String interpolation is also known as string formatting

How the Code Works: Lines 55 to 76

Now that the program has displayed the rules to Bagels to the player, the program will
randomly create a secret number and then enter a loop where it repeatedly asks for the
player's guesses until she has either correctly guessed the secret number, or has run out of
guesses. After that, we will ask the player if she wants to play again.

Creating the Secret Number

55. while True:

56. secretNum = getSecretNum(NUMDIGITS)

57. print(l have thought up a number. You have %s
guesses to get it.' % (MAXGUESS))

58.

59. numGuesses = 1

60. while numGuesses <= MAXGUESS:

We start with a while loop that has a condition of True, meaning it will loop forever
until we execute a break statement. Inside the infinite loop, we get a secret number from

196

11 - Bagels
ourgetSecretNum() function (passin it NUMDIGITSto tell how many digits w
want the secret number to have) and assignsitoetNum. Re member that
secretNum is a string, not an integer.

We tell the player how many digits is in our secret number by using string interpolation
instead of string concatenation. We set a variable numGuesséds to denote that this is
the first guess. Then we enter a new while loop which will keep looping as long as
numGuesses is less than or equal to MAXGUESS.

Getting the Player's Guess

Notice that this second whileloop on Ine 60 is inside another while loop that started
on line 55. Whenever we have these loops-inside-loops, we calhibsgted loops . You
should know that any break orcontinue statements will only break or continue
out of the innermost loop, and not any of the outer loops.

61. guess ="

62. while len(guess) = NUMDIGITS or not isOnlyDigits
(guess):

63. print(Guess #%s: ' % (humGuesses))

64. guess = input()

The guess variable will hold the player's guess. We will keep looping and asking the
player for a guess until the player enters a guess that has the same number of digits as the
secret number and is made up only of digits. This is what the while loop that starts on line
62 is for. We set guess as the blank string on line 61 so that the while loop's condition is
False the first time, ensuring that we enter the loop at least once.

Getting the Clues for the Player's Guess

66. clue = getClues(guess, secretNum)
67. print(clue)
68. numGuesses += 1

After execution gets past the while loop on line 62, we know that guess contains a
valid guess. We pass this and the secret number in secretNum to our getClues()
function. It returns a string that contains our clues, which we will display to the player. We
then increment numGuesses by 1 using the augmented assignment operator for addition.

Checking if the Player Won or Lost

70. if guess == secretNum:
71. break
72. if numGuesses > MAXGUESS:

197

%s ' % (secretNum))

73. print("You ran out of guesses. The answer was ”

If guess is the same value asecretNum, t hen we know the player has correctly
guessed the secret number and we can break out of this loop (the while loop that was
started on line 60). If not, then execution continues to line 72, where we check to see if the
player ran out of guesses. If so, then we tell the player that they have lost and what the secret
number was. We know that the condition for Wigle loop on line 55 will be False, so
there is no need forlareak statement.

At this point, execution jumps back to tivéile loop on line 60 where we let the player
have another guess. If the player ran out of guesses (or we broke out of the loop with the
break statement on line 71), then execution would proceed to line 75.

Asking the Player to Play Again

76. break

75. if not playAgain(): “

After leaving the while loop on line 60, we ask the player if want to play again by
cdling ourplayAgain() function. If ~ playAgain() returns False, then we should
break out of thevhile loop that was started on line 55. Since there is no more code after
this loop, the program terminates.

If playAgain() returned True, then we would not execute tHareak statement and
execution would jump back to line 55. A new secret number would be generated so that the
player can play a new game.

Summary: Getting Good at Bagels

Bagels is a fairly simple game to program but can be difficult to win at. But if you keep
playing, you will eventually discover better ways to guess and make use of the clues the
game gives you.

This chapter introduced a few new functions and methaasl¢m.shuffle() , sort
() , and join()), along with a couple handy shortcuts. Using the augmented assignment
operators involve less typing when you want to change a variable's relative value (such as in
spam =spam + 1 , which can be shortend to spam += 1). String interpolation can
make your code much more readable by plagtisg(called a conversion specifier) inside the
string instead of using many string concatenation operations.

The join() string method is passed a list of strings that will be concatenated together,
with the original associated string in between them. For example, 'X'.join
(['hello’, 'world', 'yay']) will evaluate to the string,

198

11 - Bagels
'helloXworldXyay"'

The sort() list method will rearrange the items in the list to be in alphabetical order.

Theappend() list method will add a value to the end of the associated |spakin
contains the list ['a’, 'b’, 'c'] , then calling spam.append('d’) will change
the list in spam to be ['a’, 'b’, 'c’, 'd]

The next chapter is not about programming directly, but will be necessary for the games
we want to create in the later chapters of this book. We will learn about the math concepts
of Cartesian coordinates and negative numbers. These will be used in the Sonar, Reversi,
and Dodger games, but Cartesian coordinates and negative numbers are used in almost all
games (especially graphical games). If you already know about these concepts, give the
next chapter a brief readi anyway just to freshen up. Let's cin!

199

Chapter] 2

Cartesian Coordinates

Topics Covered In This Chapter:

Cartesian coordinate systems.

The X-axis and Y-axis.

The Commutative Property of Addition.
Absolute values and the abs(function.

This chapter does not introduce a new game, but instead goes over some simple
mathematical concepts that we will use in the rest of the games in this book.

When you look at 2D games (such as Tetris or old Super Nintendo or Sega Genesis
games) you can see that most of the graphics on the screen can move left or right (the first
dimension) and up or down (the second dimension, hence 2D). In order for us to create
games that have objects moving around two dimensions (such as the two dimensional
computer screen), we need a system that can translate a place on the screen to integers that
our program can deal with.

This is where Cartesian coordinate systems come in. The coordinates can point to a very
specific point on the screen so that our program can keep track of different areas on the
screen.

Negative numbers are often used with Cartesian coordinate systems as well. The second
half of this chapter will explain how we can do math with negative numbers.

You may already know about Cartesian coordinate systems and negative numbers from
math class. In that case, you can just give this chapter a quick read anyway to refresh
yourself

200

12 - Cartesian Coordinates

Grids and Cartesian Coordinates

A problem in many games is how to talk a b ¢ d e £ g h
about eact points on the board. A common] '
way of solving this is by marking each 8 | 8
individual row and column on a board with { - -
letter and a number. Figure 12-1 is a chesg
board that has each row and each column | & @ 3
marked. @ '

FKFS 5
In chess, the knight piece looks like a Eq q 4

horse head. The white knight is located at {
point e, 6 and the black knight is located at| 3 3
point a, 4. We can also see that every spag

; . s 2
on row 7 and every space in column c is
empty. 1 1
A grid with labeled rows and columns like SN R J{cfaxii £ g b

the chess board is a Cartesian coordinate Figure 12-1; A sample chessboard with @

system. By using a row label and column black knight at a, 4 and a white knight at €

label, we can give a coordinate that is for one

and only one space on the board. This can really help us describe to a computer the exact
location we want. If you have learned about Cartesian coordinate systems in math class,
you may know that usually we have numbers for both the rows and columns. This is handy,
because otherwise after the 26th column we would run out of letters. That board would
look like Figure 12-2.

The numbers going left and right that describe the columns are part6athis. The
numbers going up and down that describe the rows are part of the YWélesn we
describe coordinates, we always say the X-coordinate first, followed by the Y-coordinate.
That means the white knight in the above picture is located at the coordinate 5, 6 (and not
6, 5). The black knight is located at the coordinate 1, 4 (not to be confused with 4, 1).

Notice that for the black knight to move to the white knight's position, the black knight
must move up two spaces, and then to the right by four spaces. (Or move right four spaces
and then move up two spaces.) But we don't need to look at the board to figure this out. If
we know the white knight is located at 5, 6 and the black knight is located at 1, 4, then we
can just use subtraction to figure out this information.

Subtract the black knight's X-coordinate and white knight's X-coordinate: 5 - 1 = 4. That
means the black knight has to move along the X-axis by four spaces.

Subtract the black knight's Y-coordinate and white knight's Y-coordinate: 6 - 4 = 2. That
means the black knight has to move a the Y-axis by two space

201

Negative Numbers

Another concept that Cartesian
coorinates use is negative numbers.
Negative numbers are numbers that are
smaller than zero. We put a minus sign in
front of a number to show that it is a
negative number. -1 is smaller than 0. And
is smaller than -1. And -3 is smaller than -2
If you think of regular numbers (called
positive numbers) as starting from 1 and
increasing, you can think of negative
numbers as starting from -1 and decreasing
0 itself is not positive or negative. In this
picture, you can see the positive numbers

1 2 3 4 5 B 7 B8
X-axis

increasing to the right and the negative
numbers decreasing to the left:

Figure 12-2: The same chessboard but with
numeric coordinates for both rows and colun

TT T 1T T] !

(smaller)

-9-8-?-6-5-4-3-2-10123456?89

i

(blgger)

Figure 12-3: A

number line.

Thenumber line is really useful for doing subtraction and addition with negative
numbers. The expression 4 + 3 can be thought of as the white knight starting at position 4
and moving 3 spaces over to the right (addition means increasing, which is in the right

direction).

Sy

——

g | | '
9474654324091 2345867873

(smaller) 4+3=7 (bigger)

Figure 12-4: Moving the white knight to the right adds to the coordinate.

As you @n see, the white knight ends up
IS 7.

at position 7. This makes sense, because 4 + 3

Subtraction can be done by moving the white knight to the left. Subtraction means

decreasing, which is in the left direction. 4 -

4 and moving spaces to the le

202

6 would be the white knight starting at position

12 - Cartesian Coordinates

VAT

J—] s
9-8-76-54-3-2-10912345¢6 789
(smaller) 46z =g (bigger)

Figure 12-5: Moving the white knight to the left subtracts from the coordinate.

The white knight ends up at position -2. That means 4 - 6 equals -2.

If we add or subtract a negative number, the white knight would move in the opposite
direction. If you add a negative number, the knight moves ttefthdf you subtract a
negative number, the knight moves to the rigtite expression -6 - -4 would be equal to -
2. The knight starts at -6 and moves torilglt by 4 spaces. Notice that -6 - -4 has the

same answer as -6 + 4.

r—

NV VY |

9-8-7-6-5-4-3-2-1091234

-6+4=-2

(smaller)

5 6 7 8 9
(bigger)

Figure 12-6: Even if the white knight starts at a negative coordinate, moving right still adds to the coordinate.

Ny
S)
2 |
. |
(-3,1)
P ++ :
I
PRSP () P —
3 @ -l I 2 3
T-1

Figure 12-7: Putting two number lines together creates a Cartesian coordinate system.

The number line is the same as tr-axis If we made the number line go up and dc
203

instead of left and right, it wouL model the *-axis. Adding a positive number (
subtracting a negative number) would move the knight up the number line, and subtracting
a postive number (or adding a negative number) would move the knight down. When we
put these two number lines together, we have a Cartesian coordinate system like in Figure
12-7.

The 0, O coordinate has a special name: the origin

Math Tricks

Subtracting negative numbers or adding negative numbers seems easy when you have a
number line in front of you, but it can be easy when you only have the numbers too. Here
are three tricks you can do to make evaluating these expressions by yourself easier to do.

Trick 1: "A Minus Eats the Plus Sign on its Left"

The first is if you are adding a negative number, for example; 4 + -2. The first trick is "a
minuseats the plus sign on its left". When you see a minus sign with a plus sign on the left,
you can replace the plus sign with a minus sign. The answer is still the same, because
adding a negative value is the same as subtracting a positive value. 4 + -2 and 4 - 2 both
evaluate to 2.

4+ 2=2

(a minus eats the plus sign on its left)

4-2=2

Figure 12-8: Trick 1 - Adding a positive and negative number.

Trick 2: "Two Minuses Combine Into a Plus”

The second trick is if you are subtracting a negative number, for example, 4 - -2. The
seond tick is "two minuses combine into a plus". When you see the two minus signs next
to each other without a number in between them, they can combine into a plus sign. The
answer is still the same, because subtracting a negative value is the same as adding a
positive value

204

12 - Cartesian Coordinates

4--2:=6

(two minuses combine into a plus)

4+2=6

Figure 12-9: Trick 2 - Subtracting a positive and negative number.

Trick 3: The Commutative Property of Addition

A third trick is to remember that when you add two numbers like 6 and 4, it doesn't
matte what order they are in. (This is called the commutative propeofyaddition.)
That means that 6 + 4 and 4 + 6 both equal the same value, 10. If you count the boxes in the
figure below, you can see that it doesn't matter what order you have the numbers for
addition.

6 + 4 4 + 6
LIT TP ITiy] TP]TTITTT]
—_—

10 10

Figure 12-10: Trick 3 - The commutative property of addition.

Say you are adding a negative number and a positive number, like -6 + 8. Because you
are adding numbers, you can swap the order of the numbers without changing the answer. -
6 + 8 is the same as 8 + -6. But when you look at 8 + -6, you see that the minus sign can eat
the plus sign to its left, and the problem becomes 8 - 6 = 2. But this means that -6 + 8 is
also 2! We've rearranged the problem to have the same answer, but made it easier for us to
solve without using a calculator or the compi

205

-6+8=2

(because this is addition, swap the order)

8+-6=2

(the minus sign eats the plus sign on its left)

8-6=2

Figure 12-11: Using our math tricks together.

Of course, you can always use the interactive shell as a calculator to evaluate these
expressions. It is still very useful to know the above three tricks when adding or subtracting
negative numbers. After all, you won't always be in front of a computer with Python all the
time!

>>> 4 + -2

>>> -4 + 2

>>> -4 + -2

Absolute Values and the abs() Function

The absolute valueof a number is the number without the negative sign in front of it.
This means that positive numbers do not change, but negative numbers become positive.
For example, the absolute value of -4 is 4. The absolute value of -7 is 7. The absolute value
of 5 (which is positive) is just 5.

We can find how far away two things on a number line are from each other by taking the
absoluti value of their difference. Imagine that the white knight is at position the

206

12 - Cartesian Coordinates
black knight is at positio-2. To find out the distance between them, would find the
difference by subtracting their positions and taking the absolute value of that number.

It works no matter what the order of the numbers is. -2 - 4 (that is, negative two minus
four) is -6, and the absolute value of -6 is 6. However, 4 - -2 (that is, four minus negative
two) is 6, and the absolute value of 6 is 6. Using the absolute value of the difference is a
good way of finding the distance between two points on a number line (or axis).

The abs() function can be used to return the absolute value of an integertb3te
function is a built-in function, so you do not need to import any modules to use it. Pass it an
integer or float value and it will return the absolute value:

>>> abs(-5)

5

>>> abs(42)

42

>>> abs(-10.5)
10.5

Coordinate System of a Computer Monitor

It is common that computer
monitors use a coordinate syster
that has the origin (0, 0) at the to
left corner of the screen, which
increases going down and to the
right. There are no negative
coordinates. This is because tex|) e i o
is printed starting at the top left, Y increases
and is printed going to the right
and downwards. Most computer
graphics use this coordinate
system, and we will use it in our
games. Also it is common to
assume that monitors can displa
80 text characters per row and 2
text characters per column (look
at Figure 12-12). This used to be
the maximum screen size that | . .
monitors could support. While Figure 1.-12: The Cartesian coordinate system on a computer mc
today's monitors can usually display much more text, we will not assume that the user's
screen is bigger than 80 25.

X increases

207

Summary: Using this Math in Games

This hasn't been too much math to learn for programming. In fact, most programming
doesnotrequire understanding a lot of math. Up until this chapter, we have been getting by
on simple addition and multiplication.

Cartesian coordinate systems are needed to describe exactly where in a two dimensional
area a certain position is. Coordinates are made up of two numbers: the X-coordinate and
the Y-coordinate. The X-axis runs left and right and the Y-axis runs up and down. On a
computer screen (and in most computer programming), the X-axis starts at O at the left side
and increases on the way to the right. The Y-axis starts at 0 on the top of the screen and
increases on the way down.

For the rest of the book, we will use the concepts we learned in this chapter in our games

because they have two dimensional areas in them. All graphical games require
understanding how Cartesian coordin work.

208

Chapter I 3

Sonar Treasure Hunt

Topics Covered In This Chapter:

Data structures.

Theremove() list method.
The isdigit() string method.
The sys.exit() function.

The game in this chapter only introduces a couple new helpful methods that come with
Python, the remove() list method and the isdigit() string method. But this is the
first program which will make use of Cartesian coordinates and the mathematical concepts
we learned in chapter 11. This program will also use make use of data structures (which is
really just a fancy way of saying variables that contain lists of lists.) As our games become
more complicated, we will need to store our data in well-organized ways.

Sonar is a technology that ships use to locate objects under the sea. In this chapter's
game, the player places sonar devices at various places in the ocean to locate sunken
treasure chests. The sonar devices (in our game) can tell the player how far away a treasure
chest is from the sonar device, but not in what direction. But by placing multiple sonar
devices down, the player can figure out where exactly the treasure chest is.

There are three chests to collect, but the player has only sixteen sonar devices to use to
find them. Imagine that we could not see the treasure chest in the following picture.
Because each sonar device can only find the distance but not direction, the possible places
the treasure could be is anywhere in a ring around the sonar device (se' 13-1).

209

Sonar device
L

Treasure chest

®
sonar device

[]
Sonar device

Figure 13-1: The first sonar device shows a ring
of possible places the treasure could be located.

sonarevice

ey

. ™ :
v sonar device

Figure 13-2: Combining the rings of all three sonar
devices shows only one possible place for the treasure.

But if we have multiple sonar devices working together, we can narrow it down to an
exact place where all the rings intersect each other. (See Figure 13-2)

Sample Run

SONAR!

Would you like to view the instructions? (yes/no)
no

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

0 S e e e e e ST S S g
] e LN SN S Sees
D TSNS ISRt

210

B A g
A NI
N SN

B e TN I T
7 S T T T I L T N,
N NN

9~ e S ST N g

10 S TR R N 0

11 e e T T TR T

12 e s e e T N
OISR - SN
14 o T L,

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
You have 16 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)
10 10
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

0 e e e e e A S
L e e N
2 TN e N R e
NN S g

PR S N N NN S
N S
NN N R
7 e S L I T L LT
N NN

9~ e I N g

10 T T AE S e S S

11 e e IR T

12 s e e e S N NN 1)

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 5 from the sonar device.
You have 15 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)
15 6
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

0 e e e e e A
SN NN
2 e N N e a2
NN g

4 s e A T N e g
N SN S SN S 4
PN NSNS
7 e NSRRI NN
B e e e N e g
SN S NN

10 S B ST T
P S SN RS
NN NN SN P
P IRSNEENA ~ SN
LA o L T LS

13 - Sonar Treasure Hunt

211

212

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
You have 14 sonar devices left. 3 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or
type quit)
15 10
1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

0 e e e e e
] T T L I I T L T S T
SIS T T NN
RN g
A NN
S SN
P NN
7 L T T T L I TR I AT
NN

S NN

10 o O et T T
11 e S I T T TR T
e I i)
RIS T N
14~ = = NN SN g

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
You have found a sunken treasure chest!
You have 13 sonar devices left. 2 treasure chests remaining.
Where do you want to drop the next sonar device? (0-59 0-14) (or

type quit)

...skipped over for brevity....

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789

0 M e e e e N LN S g
1 e e e e e N G e e e L
D N N N N N (O e e e

R TR SN NSNS g

A e e N N () e O e e e e g

N N N N NN NN
B e I T T S T 2
7 e N R

B e e e N)T e e 8

9~ e S A N N O e S S g

10 e e
L e S T L
12~ s e e T S N 1

012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
We've run out of sonar devices! Now we have to turn the ship around
and head
for home with treasure chests still out there! Game over.

13 - Sonar Treasure Hunt
The remaining chests were here: i
i 0,4
Do you want to play again? (yes or no)
i no

Sonar's Source Code

Knowing about Cartesian coordinates, number lines, negative numbers, and absolute
values will help us out with our Sonar game. If you do not think you understand these
concepts, go back to chapter 11 to brush up. Below is the source code for the game. Type it
into a new file, then save the file smar.py and run it by pressing the F5 key. You do not
need to understand the code to type it in or play the game, the source code will be explained
later.

Also, you can download the source code from the book's website at the URL
http://inventwithpython.com/chapter13.

sonar.py

This code can be downloaded from http://inventwithpython.com/sonar.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

Sonar

import random
import sys

def drawBoard(board):
Draw the board data structure.

NGO~ WNE

hline =' ' # initial space for the numbers down
the left side of the board
10. foriinrange(d, 6):
11. hline += ("' * 9) + str(i)

13. # print the numbers across the top
14. print(hline)

15. print(" '+ ('0123456789' * 6))

16. print()

18. # print each of the 15 rows
19. foriin range(15):

20. # single-digit numbers need to be padded with an
extra space

21. if i < 10:

22. extraSpace ="'

23. else:

24. extraSpace ="

25. print('%s%s %s %s' % (extraSpace, i, getRow
(board, i), i)

26.

213

214

27.
28.
29.
30.

print the numbers across the bottom
print()

print(" '+ ('0123456789' * 6))

print(hline)

31.
32.

33

34.

35.
36.
37.
38.

. def getRow(board, row):
Return a string from the board data structure at a
certain row.
boardRow ="
for i in range(60):
boardRow += board[i][row]
return boardRow

39.

40

41.
42.
43.

44,
45.

46.

47.
48.
49.
50.
51.

. def getNewBoard():
Create a new 60x15 board data structure.
board =]
for x in range(60): # the main list is a list of 60
lists
board.append([])
for y in range(15): # each list in the main list
has 15 single-character strings
use different characters for the ocean to
make it more readable.
if random.randint(0, 1) == 0:
board[x].append('~")
else:
board[x].append(")
return board

52.

53

54.
55.
56.
57.

58.

. def getRandomChests(numChests):

Create a list of chest data structures (two-item
lists of x, y int coordinates)

chests =]

for i in range(numChests):

chests.append([random.randint(0, 59),

random.randint(0, 14)])

return chests

59.

60

61.

62.

. def isValidMove(x, y):

Return True if the coordinates are on the board,
otherwise False.

return x >=0and x<=59andy>=0andy <= 14

63.

64

65.

66.

67.

68.
69.

. def makeMove(board, chests, X, y):

Change the board data structure with a sonar device
character. Remove treasure chests

from the chests list as they are found. Return False
if this is an invalid move.

Otherwise, return the string of the result of this
move.

if not isValidMove(x, y):

return False

70.

71. smallestDistance = 100 # any chest will be closer than

100.

72. for cx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. distance = abs(cx - x)

75. else:

76. distance = abs(cy - y)

77.

78. if distance < smallestDistance: # we want the
closest treasure chest.

79. smallestDistance = distance

80.

81. if smallestDistance == O:

82. # xy is directly on a treasure chest!

83. chests.remove([x, y])

84. return 'You have found a sunken treasure chest!'

85. else:

86. if smallestDistance < 10:

87. board[x][y] = str(smallestDistance)

88. return ‘Treasure detected at a distance of %s

from the sonar device.' % (smallestDistance)
89. else:

90. board[x][y] = 'O’

91. return 'Sonar did not detect anything. All
treasure chests out of range.’

92.

93.

94. def enterPlayerMove():

95. # Let the player type in her move. Return a two-item
list of int xy coordinates.

96. print('Where do you want to drop the next sonar
device? (0-59 0-14) (or type quit)")

97. while True:

98. move = input()
99. if move.lower() == 'quit":
100. print("Thanks for playing!)
101. sys.exit()
102.
103. move = move.split()
104. if len(move) == 2 and move[0].isdigit() and move
[1].isdigit() and isValidMove(int(move[Q]), int(move[1])):
105. return [int(move[0]), int(move[1])]
106. print(Enter a number from 0 to 59, a space, then
a number from 0 to 14.")
107.
108.

109. def playAgain():

110. # This function returns True if the player wants to
play again, otherwise it returns False.

111. print('Do you want to play again? (yes or no)’)

112. return input().lower().startswith('y")

113.

114.

115. def showlnstructions():

13 - Sonar Treasure Hunt

215

216

116.
117.

118.

119.
120.
121.

122.

123.

124.

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

140.
141.
142.
143.
144.
145.
146.
147.
148.

149.
150.

151.
152.
153.
154.
155.

156.
157.

print("'Instructions:
You are the captain of the Simon, a treasure-hunting ship.
Your current mission
is to find the three sunken treasure chests that are
lurking in the part of the
ocean you are in and collect them.

To play, enter the coordinates of the point in the ocean
you wish to drop a

sonar device. The sonar can find out how far away the
closest chest is to it.

For example, the d below marks where the device was
dropped, and the 2's

represent distances of 2 away from the device. The 4's
represent

distances of 4 away from the device.

444444444
4 4
422222 4
42 24
42d24
42 24
422222 4
4 4
444444444
Press enter to continue...")

input()

print("'For example, here is a treasure chest (the c)
located a distance of 2 away

from the sonar device (the d):

22222
c 2
2d2
2 2
22222

The point where the device was dropped will be marked with
az2.

The treasure chests don't move around. Sonar devices can
detect treasure

chests up to a distance of 9. If all chests are out of
range, the point

will be marked with O

If a device is directly dropped on a treasure chest, you
have discovered

the location of the chest, and it will be collected. The
sonar device will

remain there.

158.

159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.

188.
189.
190.

191.
192.
193.
194.
195.
196.

197.

198.
199.
200.
201.
202.
203.
204.

When you collect a chest, all sonar devices will update to
loca t e the next
closest sunken treasure chest.
Press enter to continue...")
input()
print()

printf(SONAR)
print()
print('Would you like to view the instructions? (yes/no)")
if input().lower().startswith('y"):
showlnstructions()

while True:
game setup
sonarDevices = 16
theBoard = getNewBoard()
theChests = getRandomChests(3)
drawBoard(theBoard)
previousMoves =[]

while sonarDevices > 0:
Start of a turn:

show sonar device/chest status

if sonarDevices > 1: extraSsonar ='s'

else: extraSsonar ="

if len(theChests) > 1: extraSchest = 's'

else: extraSchest ="

print("You have %s sonar device%s left. %s
treasure chest%s remaining.' % (sonarDevices, extraSsonar,
len(theChests), extraSchest))

X, y = enterPlayerMove()
previousMoves.append([x, y]) # we must track all
moves so that sonar devices can be updated.

moveResult = makeMove(theBoard, theChests, X, y)
if moveResult == False:
continue
else:
if moveResult == "You have found a sunken
treasure chest!"
update all the sonar devices currently
on the map.
for x, y in previousMoves:
makeMove(theBoard, theChests, X, y)
drawBoard(theBoard)
print(moveResult)

if len(theChests) == 0:
print("You have found all the sunken treasure
chests! Congratulations and good game!’)

13 - Sonar Treasure Hunt

217

205. break

206.

207. sonarDevices -= 1

208.

209. if sonarDevices == 0:

210. print('We\'ve run out of sonar devices! Now we
have to turn the ship around and head')

211. print(‘for home with treasure chests still out
there! Game over.")

212. print(The remaining chests were here:’)

213. for X, y in theChests:

214, print(" %s, %s' % (X, y))

215.

216. if not playAgain():

217. sys.exit()

Designing the Program

Sonaris kind of complicated, so it might be better to type in the game's code and play it a
few times first to understand what is going on. After you've played the game a few times,
you can kind of get an idea of the sequence of events in this game.

The Sonar game uses lists of lists and other complicated variables. These complicated
variables are known ahata structures . Data structures will let us store nontrivial
arrangements of values in a single variable. We will use data structures for the Sonar board
and the locations of the treasure chests. One example of a data structure was the board
variable in the Tic Tac Toe chapter.

It is also helpful to write out the things we need our program to do, and come up with
some function names that will handle these actions. Remember to name functions after what
they specifically do. Otherwise we might end up forgetting a function, or typing in two
different functions that do the same thing.

Table 1:-1: A list of each function the Sonar game ne

Thefunction that will do
it.

What the code should do.

Prints the game board on the screen based dyotre
data structure it is passed, including the coordinates gidiggvBoard()
the top, bottom, and left and right sides.

Create a fresh boarddata structure. getNewBoard()

Create a freshhests data structure that has a numbe

r
tRandomChest
of chests randomly scattered across the game board. getRandomChests()

Cheqk that the XY coordinates that are passed to this isvalidMove()
function are located on the game board or not.

Let the player type in the XY coordinates of his next
218

13 - Sonar Treasure Hunt

move, and keep asking until they type in the CoordinatgﬁterPlayerMove()

correctly.

Place a sonar device on the game board, and update|the
board data structure then return a string that describesmakeMove()
what happened.

Ask the player if they want to play another game of

Sonatr. playAgain()

Print out instructions for the game. showlnstructions()

These might not be all of the functions we need, but a list like this is a good idea to help
you get strted with programming your own games. For example, when we are writing the
drawBoard() function in the Sonar game, we figure out that we also need a getRow()
function. Writing out a function once and then calling it twice is preferable to writing out
the code twice. The whole point of functions is to reduce duplicate code down to one place,
so if we ever need to make changes to that code we only need to change one place in our
program.

How the Code Works: Lines 1 to 38

. # Sonar

1
2.
3. i mport random
4. import sys

Here we import two modules, random argys. The sys module contains thexit()
function, which causes the program to immediately terminate. We will call this function
later in our program.

Drawing the Game Board

|| 6. def drawBoard(board): ||

The ba& tick (*) and tilde (~) characters are located next to the 1 key on your keyboard.
They resemble the waves of the ocean. Somewhere in this ocean are three treasure chests,
but you don't know where. You can figure it out by planting sonar devices, and tell the
game program where by typing in the X and Y coordinates (which are printed on the four
sides of the screen.)

The drawBoard() function is the first function we will define for our program. The

sonar game's board is an ASClII-art ocean with coordinates going along the X- and Y-axis,
and looks like this

219

1 2 3 4 5
012345678901234567890123456789012345678901234567890123456789
e

R N NN
N N SN A P
B e L T S AL LT,
4~ ~~ M g
N SN
S NN SN N NN
P NN
B e T 8
N NN
SN NI
11 e NSNSt
12 NN NN
1 L S L L NS T
L e e e e,
012345678901234567890123456789012345678901234567890123456789
1 2 3 4 5

We will split up the drawing in the drawBoard() function into four steps. First, we
create a string variable of the line with 1, 2, 3, 4, and 5 spaced out with wide gaps. Second,
we use that string to display the X-axis coordinates along the top of the screen. Third, we
print each row of the ocean along with the Y-axis coordinates on both sides of the screen.
And fourth, we print out the X-axis again at the bottom. Having the coordinates on all sides
makes it easier for the player to move their finger along the spaces to see where exactly
they want to plan a sonar device.

Drawing the X-coordinates Along the Top

7. # Draw the board data structure.
8.
9. hline ="' ' # initial space for the numbers down
the left side of the board
10. foriinrange(d, 6):
11. hline += ("' * 9) + str(i)

Let's look again at the top part of the board, this time with plus signs instead of blank
spaces so we can count the spaces easier:

++++++H+H LA 2T # first line
+++0123456789012345678901234567890123456789 # second line

+|:| [R T o Y A 2 ot oLl S IR R R TR I:I # thlrd 11]:1e

Figure 1:-3: The spacing we use for printing the of the game boar

220

13 - Sonar Treasure Hunt
The numbers on the first line which mark the position all have nine spaces
between them, and there are thirteen spaces in front of the 1. We are going to create a string
with this line and store it in a variable named hline.

13. # print the numbers across the top

14. print(hline)
15. print(" '+ ('0123456789' * 6))
16. print()

To print the numbers across the top of the sonar board, we first print the contents of the
hline variable. Then on the next line, we print three spaces (so that this row lines up
correctly), and then print the string
'012345678901234567890123456789012345678901234567890123456789'

But this is tedious to type into the source, so instead we Yp23456789' * 6)
which evaluates to the same string.

Drawing the Rows of the Ocean

18. # print each of the 15 rows

19. for i in range(15):

20. # single-digit numbers need to be padded with an
extra space

21. if i < 10:

22. extraSpace ="'

23. else:

24, extraSpace ="

25. print('%s%s %s %s' % (extraSpace, i, getRow
(board, i), i)

Now we print the each row of the board, including the numbers down the side to label
the Y-axis. We use ther loop to print rows 0 through 14 on the board, along with the
row numbers on either side of the board.

We have a small problem. Numbers with only one digit (like 0, 1, 2, and so on) only take
up one space when we print them out, but numbers with two digits (like 10, 11, and 12)
take up two spaces. This means the rows might not line up and would look like this:

NSNS
NN
110 S S S LSS S S Ss se_ses ST

1] ettt Sty NS

The soltion is easy. We just add a space in front of all the single-digit numbers. The if-
else statement that starts on line 21 does this. We will print the variable extraSpace
when we print the row, and if i is less than 10 (which means it will have only one digit),

221

we assign a single space strinextraSpace . Otherwise, we seextraSpace taobe
a blank string. This way, all of our rows will line up when we print them.

ThegetRow() function will return a string representing the row number we pass it. Its
two parameters are the board data structure stored in the board variable and a row
number. We will look at this function next.

Drawing the X-coordinates Along the Bottom

27. # print the numbers across the bottom
28. print()

29. print(" '+ ('0123456789' * 6))

30. print(hline)

This code is similar to lines 14 to 17. This will print the X-axis coordinates along the
bottom of the screen.

Getting the State of a Row in the Ocean

33. def getRow(board, row):

34. # Return a string from the board data structure at a
certain row.

35. boardRow ="

36. foriin range(60):

37. boardRow += board[i][row]

38. return boardRow

This function constructs a string called boardRdwom the characters storedboard.
First we set boardRow to the blank string. The row number (which is the Y coordinate) is
passed as a parameter. The string we want is made by concatboatut@][row],
board[1][row], board[2][row], and so on up to board[59][row] . (This is
because the row is made up of 60 characters, from index@ex 59.)

The for loop iterates from integer® to 59. On each iteration the next character in the
board data structure is copied on to the end of boardRow. By the time the loop is done,
extraSpace is fully formed, so we return it.

How the Code Works: Lines 40 to 62

Now that we have a function to print a given game board data structure to the string, let's
turn to the other functions that we will need. At the start of the game, we will need to create
a new game board data structure and also place treasure chests randomly around the board.
We should also create a function that can tell if the coordinates entered by the player are a
valid move or no

222

13 - Sonar Treasure Hunt

Creating a New Game Board

40. def getNewBoard():

41, # Create a new 60x15 board data structure.

42. board =]

43. for x in range(60): # the main list is a list of 60
lists

44, board.append([])

At the start of each new game, we will need a fresh board data structure. The board
data structure is a list of lists of strings. The first list represents the X coordinate. Since our
game's board is 60 characters across, this first list needs to contain 60 lists. So we create a
for loop that will append 60 blank lists to it.

45, for y in range(15): # each list in the main list
has 15 single-character strings

46. # use different characters for the ocean to
make it more readable.

47. if random.randint(0, 1) == 0:

48. board[x].append('~")

49. else:

50. board[x].append("")

But board is more than just a list of 60 blank lists. Each of the 60 lists represents the Y
coordinate of our game board. There are 15 rows in the board, so each of these 60 lists must
have 15 characters in them. We have andtivdoop to add 15 single-character strings
that represent the ocean. The "ocean" will just be a bunehanid "' strings, so we
will randomly choose between those two. We can do this by generating a random number
between 0 and 1 with a call to random.randint(). If the return value of
random.randint() is 0, we add the '~' string. Otherwise we will add the"
string.

This is like deciding which character to use by tossing a coin. And since the return value
from random.randint() will be 0 about half the time, half of the ocean characters will
be '~' and the other half will be"". This will give our ocean a random, choppy look to
it.

Remember that theoard variable is a list of 60 lists that have 15 strings. That means
to get the string at coordinate 26, 12, we would access board[26][12]and not board
[12][26]. The X coordinate is first, then the Y coordinate.

Here is the picture to demonstrate the indexes of a list of lists nariiéeé red arrows

point to indexes of the inner lists themselves. The image is also flipped on its side to make
it easier to rea

223

T

x[0] [1]
5 x[01[2]

- e (U
» x[11[1]
= x[11[2]

S el
81, [421] = x[2][1]
= x[2][2]
= x[2][3]

Haoml

0711

=

x[0]
x[1]
x[2]
x[3]
‘ng

0
T

x[0][0]
x[0][1]
x[1]1[1]
x[1]1[2]
x[2][1]
x[2][2]
x[2][3]

2 x[0]1[2]

]
-
-
—
-
—
an
-
an
-
an
-

[(rio, =

L]
-

(3.

’

[le%]

Figure 13-4: The indexes of a list of lists.

|| 51. return board ||

Findly, we return the board variable. Remember that in this case, we are returning a
reference to the list that we made. Any changes we made to the list (or the lists inside the
list) in our function will still be there outside of the function.

Creating the Random Treasure Chests

53. def getRandomChests(numChests):

54. # Create a list of chest data structures (two-item
lists of x, y int coordinates)

55. chests =]

56. foriin range(numChests):

57. chests.append([random.randint(0, 59),
random.randint(0, 14)])

58. return chests

Another task we need to do at the start of the game is decide where the hidden treasure
chests are. We will represent the treasure chests in our game as a list of lists of two
integers. These two integers will be the X and Y coordinates. For example, if the chest data
structure was [[2, 2], [2, 4], [10, 0]] , then this would mean there are three

treasure chests, one at 2, 2, another at 2, 4, and a third on O.

224

13 - Sonar Treasure Hunt
We will pass thimumChests parameter to tell tt function how many treasure che

we want it to generate. We set up a for loop to iterate this number of times, and on each
iteration we append a list of two random integers. The X coordinate can be anywhere from
0 to 59, and the Y coordinate can be from anywhere between 0 and 14. The expression
[random.randint(0, 59), random.randint(0, 14)] that is passed to the
append method will evaluate to something like [2, 2] or [2, 4] or [10, O]. This

data structure is then returned.

Determining if a Move is Valid

60. def isValidMove(x, y):

61. # Return True if the coordinates are on the board,
otherwise False.

62. returnx>=0andx<=59andy>=0andy<=14

The player will type in X and Y coordinates of where they want to drop a sonar device.
But they may not type in coordinates that do not exist on the game board. The X
coordinates must be between 0 and 59, and the Y coordinate must be between 0 and 14.
This function uses a simple expression that uses and operators to ensure that each
condition is True. If just one isFalse, then the entire expression evaluatesRalse.

This Boolean value is returned by the function.

How the Code Works: Lines 64 to 91

Placing a Move on the Board

64. def makeMove(board, chests, x, y):

65. # Change the board data structure with a sonar device
character. Remove treasure chests

66. # from the chests list as they are found. Return
False if this is an invalid move.

67. # Otherwise, return the string of the result of this

move.
68. if notisValidMove(x, y):
69. return False

In our Sonar game, the game board is updated to display a number for each sonar device
dropped. The number shows how far away the closest treasure chest is. So when the player
makes a move by giving the program an X and Y coordinate, we will change the board
based on the positions of the treasure chests. This is wmgak@Move() function takes

four parameters: the game board data structure, the treasure chests data structures, and the
X and Y coordinates.

This function will return the False Boolean value if the X and Y coordinates if was
passed do not exist on the game board. If isValidMove()returns False, then
225

makeMove() will returnFalse .

If the coordinates land directly on the treasumakeMove() wi Il return the string
"You have found a sunken treasure chest!'. If the XY coordinates are
within a distance of 9 or less of a treasure chest, we return the string 'Treasure
detected at a distance of %s from the sonar device.' (where %s is
the distance). Otherwise, makeMove() will return the striffgonar did not
detect anything. All treasure chests out of range.’

71. smallestDistance = 100 # any chest will be closer
tha n 100.

72. forcx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. distance = abs(cx - x)

75. else:

76. distance = abs(cy - y)

77.

78. if distance < smallestDistance: # we want the
closest treasure chest.

79. smallestDistance = distance

Given the XY coordinates of where the player wants to drop the sonar device, and a list
of XY coordinates for the treasure chests (in the chedist of lists), how do we find out
which treasure chest is closest?

An Algorithm for Finding the Closest Treasure Chest

While the x andy variables are just integers (s&and 0), together they represent the
location on the game board (which is a Cartesian coordinate system) where the player
guessed. The chests variable may have a value suclj[&s0], [0, 2], [4,

2]], that value represents the locations of three treasure chests. Even though these
variables are a bunch of numbers, we can visua like this

226

0 1 2 3 4 5
0122|234 52
111111213415
21001123 K05
311111231415
41212123415
51313|3]|3]4]|5

Figure13-5: The places on the board tfi&t 0], [0, 2], [4, 2]] represents.

13 - Sonar Treasure Hunt

We figure out the distance from the sonar device located at 0, 2 with "rings" and the

distances around it:

0

1

2 3 4 5

5,2

0,0

4,0

g A~ W N = 0O

Figure 13-6: The board marked with distances from the 0, 2 position.

But how do we translate this into code for our game? We need a way to represent
distance as an expression. Notice that the distance from an XY coordinate is always the
larger of two values: the absolute value of the difference of the two X coordinates and the
absolute value of the difference of the two Y coordinates.

That means we should subtract the sonar device's X coordinate and a treasure chest's X
coordinate, and then take the absolute value of this number. We do the same for the sonar
device's Y coordinate and a treasure chest's Y coordinate. The larger of these two values is
the distance. Let's look at our example board with rings above to see if this algorithm is

correct

227

The sonar's X and Y coordinates are 3 and 2. The first tr¢ chest's X and ®
coordinates (first in the list [[5, 0], [0, 2], [4, 2]] that is) are 5 and 0.

For the X coordinates, 3 - 5 evaluates to-2, and the absolute value e is 2.
For the Y coordinates, 2 - 1 evaluates td, and the absolute value of 11s

Comparing the two absolute values 2 and 1, 2 is the larger value and should be the
distance from the sonar device and the treasure chest at coordinates 5, 1. We can look at the
board and see that this algorithm works, because the treasure chest at 5,1 is in the sonar
device's 2nd ring. Let's quickly compare the other two chests to see if his distances work
out correctly also.

Let's find the distance from the sonar device at 3,2 and the treasure chest at 0,2. abs(3
- 0) evaluates to 3. The abs() function returns the absolute value of the number we
pass to it. abs(2 - 2) evaluates to 0. 3 is larger than 0, so the distance from the sonar
device at 3,2 and the treasure chest at 0,2 is 3. We look at the board and see this is true.

Let's find the distance from the sonar device at 3,2 and the last treasure chest at 4,2. abs
(3 - 4) evaluates to 1. abs(2 - 2) evaluates to 0. 1 is larger than 0, so the distance
from the sonar device at 3,2 and the treasure chest at4d,?/is look at the board and see
this is true also.

Because all three distances worked out correctly, our algorithm works. The distances
from the sonar device to the three sunken treasure chests are 2,13 Gaméach guess, we
want to know the distance from the sonar device to the closest of the three treasure chest
distances. To do this we use a variable called smallestDistance. Let's look at the
code again:

71. smallestDistance = 100 # any chest will be closer
tha n 100.

72. forcx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. distance = abs(cx - x)

75. else:

76. distance = abs(cy - y)

77.

78. if distance < smallestDistance: # we want the
closest treasure chest.

79. smallestDistance = distance

You can also use multiple assignment in for loops. For example, the assignment
statement a, b =[5, 10] will assign 5to a and 10 tob. Also, the for loop for i
in [0, 1, 2, 3, 4] will assign the i variable the values 0 and 1 and so on for each
iteration

228

13 - Sonar Treasure Hunt
Thefor loopfor cx, cy in chests: combines boti of these principles

Because chests is a list where each item in the list is itself a list of two integers, the first
of the® integers is assigned to cx and the second integer is assigned to cycl&si

has the value [[5, 0], [0, 2], [4, 2]], on the first iteration through the loop,

cx will have the value 5 and cy will have the val@

Line 73 determines which is larger: the absolute value of the difference of the X
coordinates, or the absolute value of the difference of the Y coordireie&cX - x)
< abs(cy - y) seems like much easier way to say that, doesn't it?). The if-else
statement assigns the larger of the values to the distaneariable.

So on each iteration of the for loop, the distance variable holds the distance of a
treasure chest's distance from the sonar device. But we want the shortest (that is, smallest)
distance of all the treasure chests. This is whersrttadlestDistance variable comes
in. Whenever the distance variable is smaller than smallestDistance, then the
value in distance becomes the new value obmallestDistance.

We give smallestDistance the impossibly high value of 100 at the beginning of
the loop so that at least one of the treasure chests we find will be put into
smallestDistance. By the time the for loop has finished, we know that
smallestDistance holds the shortest distance between the sonar device and all of the
treasure chests in the game.

81. if smallestDistance == 0:

82. # xy is directly on a treasure chest!
83. chests.remove([x, y])
84. return 'You have found a sunken treasure chest!'

The only time that smallestDistance is equal to O is when the sonar device's XY
coordinates are the same as a treasure chest's XY coordinates. This means the player has
correctly guessed the location of a treasure chest. We should remove this chest's two-
integer list from the chests data structure with theemove() list method.

The renove() List Method

The remove() list method will remove the first occurrence of the value passed as a
parameter from the list. For example, try typing the following into the interactive shell:

>>>x =[42, 5, 10, 42, 15, 42]
>>> x.remove(10)

>>> X

[42, 5, 42, 15, 42]

229

You can see that tt10 value has been removed from tx list. Theremove() method
removes the first occurrence of the value you pass it, and only the first. For example, type
the Pllowing into the shell:

>>>x =[42, 5, 10, 42, 15, 42]
>>> x.remove(42)
>>> X

5, 10, 42, 15, 42]

Notice that only the first 42 value was removed, but the second and third ones are still
there. The remove() method will cause an error if you try to remove a value that is not in
the list:

>>> x =[5, 42]
>>> x.remove(10)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: list.remove(X): X not in list
>>>

After removing the found treasure chest from the chests list, we return the string
'You have found a sunken treasure chest!" to tell the caller that the guess
was correct. Remember that any changes made to the list in a function will exist outside the
function as well.

85. else:

86. if smallestDistance < 10:

87. board[x][y] = str(smallestDistance)

88. return 'Treasure detected at a distance of %s
from the sonar device.' % (smallestDistance)

89. else:

90. board[x][y] = 'O’

91. return 'Sonar did not detect anything. All
treasure chests out of range.’

The else block executes ifsmallestDistance was not 0, which means the player
did not guess an exact location of a treasure chest. We return two different strings,
depending on if the sonar device was placed within range of any of the treasure chests. If it
was, we mark the board with the string version of smallestDistance. If not, we mark

the board with a '0'.

230

13 - Sonar Treasure Hunt

How the Code Works: Lines 94 to 162

The last few functions we need are to let the player enter their move on the game board,
ask theplayer if he wants to play again (this will be called at the end of the game), and print
the instructions for the game on the screen (this will be called at the beginning of the
game).

Getting the Player's Move

94. def enterPlayerMove():

95. # Let the player type in her move. Return a two-item
list of int xy coordinates.

96. print('Where do you want to drop the next sonar
device? (0-59 0-14) (or type quit)")

97. while True:

98. move = input()

99. if move.lower() == 'quit":
100. print('Thanks for playing!)
101. sys.exit()

This function collects the XY coordinates of the player's next move. It Wagaloop
so that it will keep asking the player for her next move. The player can also type in quit
in order to quit the game. In that case, we call the sys.exit() function which
immediately terminates the program.

103. move = move.split()

104. if len(move) == 2 and move[0].isdigit() and move
[1].isdigit() and isValidMove(int(move[0]), int(move
[1]):

105. return [int(move[0]), int(move[1])]

106. print('Enter a number from 0 to 59, a space, then
a number from 0 to 14.")

Assuming the player has not typedquit', we call the split() method on move
and set the list it returns as the new valumo¥e. What we expect move be is a list of
two numbers. These numbers will be strings, becaussptit§ method returns a list of
strings. But we can convert these to integers with the int() function.

If the player typed in something like '1 2 3', then the list returned by split()
would be ['1', '2', '3']. In that case, the expression len(move) == 2 would
be False and the entire expression immediately evaluates to False (because of
expression short-circuiting.)

If the list returned by split() does have a length of 2, then it will have anove[0] and
move[1l]. We call the string methodisdigit() on those strings. isdigit() will

231

returnTrue if the strin¢ consists solely of numbers. Otherwise it retiFalse . Try
typing the following into the interactive shell:

>>>'42'.isdigit()
True
>>> 'forty'.isdigit()
False
>>> " isdigit()
False
>>> 'hello'.isdigit()
False
>>> x = '10'
>>> x.isdigit()
True
>>>

As you @n see, both move[0].isdigit() and move[1].isdigit() must be

True. The final part of this expression calls our move[1] function to check if the XY
coordinates exist on the board. If all these expressions are, Tnea this function returns
a two-integer list of the XY coordinates. Otherwise, the player will be asked to enter
coordinates again.

Asking the Player to Play Again

109. def playAgain():

110. # This function returns True if the player wants to
play again, otherwise it returns False.

111. print('Do you want to play again? (yes or no)’)

112. return input().lower().startswith('y")

The playAgain() function will ask the player if they want to play again, and will
keep asking until the player types in a string that begins with 'y'. This function returns a
Boolean value.

Printing the Game Instructions for the Player

115. def showlnstructions():

116. print("'Instructions:

117. You are the captain of the Simon, a treasure-hunting
ship. Your current mission

118. is to find the three sunken treasure chests that are
lurking in the part of the

119. ocean you are in and collect them.

120.

121. To play, enter the coordinates of the point in the ocean

232

13 - Sonar Treasure Hunt
you wish to drop a

122. sonar device. The sonar can find out how far away the
closest chest is to it.

123. For example, the d below marks where the device was
dropped, and the 2's

124. represent distances of 2 away from the device. The 4's

represent
125. distances of 4 away from the device.
126.
127. 444444444
128. 4 4
129. 4222224
130. 42 24
131. 42d24
132. 42 24
133. 4222224
134. 4 4

135. 444444444
136. Press enter to continue...")
137. input()

The showlnstructions() is just a couple of print() cal Is that print multi-line
strings. Thanput() function just gives the player a chance to press Enter before printing
the next string. This is because the screen can only show 25 lines of text at a time.

139. print("'For example, here is a treasure chest (the c)
located a distance of 2 away
140. from the sonar device (the d):

141.

142. 22222

143. ¢ 2

144. 2d2

145. 2 2

146. 22222

147.

148. The point where the device was dropped will be marked with
az2.

149.

150. The treasure chests don't move around. Sonar devices can
detect treasure

151. chests up to a distance of 9. If all chests are out of
range, the point

152. will be marked with O

153.

154. If a device is directly dropped on a treasure chest, you
have discovered

155. the location of the chest, and it will be collected. The
sonar device will

156. remain there.

157.

158. When you collect a chest, all sonar devices will update to

233

locate the next
159. closest sunken treasure chest.
160. Press enter to continue...")
161. input()
162. print()

This is the rest of the instructions in one multi-line string. After the player presses Enter,
the undion returns. These are all of the functions we will define for our game. The rest of
the program is the main part of our game.

How the Code Works: Lines 165 to 217

Now that we are done writing all of the functions our game will need, let's start the main
part of the program.

The Start of the Game

165. print(SONARY)

166. p rint()

167. print("Would you like to view the instructions? (yes/no)’)
168. if input().lower().startswith('y"):

169. showlnstructions()

The expression input().lower().startswith('y’) asksthe player if they want
to see the instructions, and evaluatesriee if the player typed in a string that began with
'y' or'Y'. If so, showinstructions() is called.

171. while True:

172. # game setup

173. sonarDevices = 16

174. theBoard = getNewBoard()

175. theChests = getRandomChests(3)
176. drawBoard(theBoard)

177. previousMoves =[]

This while loop is the main game loop. Here are what the variables are for:

Table 1:-2: Variables used in the main game Ic
Variable Description

sonarDevices | The number of sonar devices (and turns) the player has left.

The board data structure we will use for this game. getNewBoarg

theBoard () will set us up with a fresh board.

The list of chest data structures. getRandomChests()will return

234

13 - Sonar Treasure Hunt
theChests a list of three treasure chests at random places on the board.

previoudMoves| A list of all the XY moves that the player has made in the game.

Displaying the Game Status for the Player

179. while sonarDevices > 0:

180. # Start of a turn:

181.

182. # show sonar device/chest status

183. if sonarDevices > 1: extraSsonar = 's'

184. else: extraSsonar ="

185. if len(theChests) > 1: extraSchest = 's'

186. else: extraSchest ="

187. print("You have %s sonar device%s left. %s
treasure chest%s remaining.' % (sonarDevices,
extraSsonar, len(theChests), extraSchest))

This while loop executes as long as the player has sonar devices remaining. We want
to print a message telling the user how many sonar devices and treasure chests are left. But
there is a problem. If there are two or more sonar devices left, we want to print '2 sonar
devices'. But if there is only one sonar device left, we want to prifi sonar
device' left. We only want the plural form of devices if there are multiple sonar devices.
The same goes for '2 treasure chests' and '1 treasure chest'

Notice on lines 183 through 186 that we have code after the ifelad statements'

colon. This is perfectly valid Python. Instead of having a block of code after the statement,
instead you can just use the rest of the same line to make your code more concise. (Of
course, this means you can only have one line of code for the if-block and else-block.) This
applies to any statement that uses colons, includinlg and for loops.

So we have two string variables named extraSsonar andxtraSchest, which are
setto'" (space) if there are multiple sonar devices or treasures chests. Otherwise, they
are blank. We use them in the while statement on line 187.

Getting the Player's Move

189. X, y = enterPlayerMove()

190. previousMoves.append([x, y]) # we must track all
moves so that sonar devices can be updated.

191.

192. moveResult = makeMove(theBoard, theChests, X, y)

193. if moveResult == False:

194. continue

Line 189 uses the multiple assignment trick. enterPlayerMove() returns a two-item
235

list. The first item will b stored in thex variable and the second will be store they
variable. We then put these two variables into another two-item list, which we store in the
previousMoves li st with the append() method. This meangreviousMoves is a
list of XY coordinates of each move the player makes in this game.

The x and yvariables, along with theBoard and theChests (which represent the
current state of the game board) are all sent to the makeMofg{tion. As we have
already seen, this function will make the necessary modifications to the game board. If
makeMove() returns the value False, then there was a problem with tkeand y values
we passed it. The continue statement will send the execution back to the start of the
while loop that began on line 179 to ask the player for XY coordinates again.

Finding a Sunken Treasure Chest

195. else:

196. if moveResult == "You have found a sunken
treasure chest!"

197. # update all the sonar devices currently
on the map.

198. for x, y in previousMoves:

199. makeMove(theBoard, theChests, X, y)

200. drawBoard(theBoard)

201. print(moveResult)

If makeMove() did not return the value False, it would have returned a string that
tells us what were the results of that move. If this string was '"You have found a
sunken treasure chest!, then that means we should update all the sonar devices
on the board so they detect the second closest treasure chest on the board. We have the XY
coordinates of all the sonar devices currently on the board stored in previousMoves. So
we can just pass all of these XY coordinates to the makeMove() function again to have it
redraw the values on the board.

We don't have to worry about this call to makeMove() having errors, because we
already know all the XY coordinatespneviousMoves are valid. We also know that
this call to makeMove() won't find any new treasure chests, because they would have
already been removed from the board when that move was first made.

The for loop on line 198 also uses the same multiple assignment trick éord y
because the items in previousMoves list are themselves two-item lists. Because we
don't print anything here, the player doesn't realize we are redoing all of the previous
moves. It just appears that the board has been entirely updated.

Checking if the Player has Won

|| 203. if len(theChests) == 0: ||
236

13 - Sonar Treasure Hunt

204. print("You have found all the sunken treasure
ches t s! Congratulations and good game!")
205. break

Remember that the makeMove(function nodifies the theChests list we send it.
BecausdgheChests is a list, any changes made to it inside the function will persist after
execution returns from the functiomakeMove() removes items fromtheChests when
treasure chests are found, so eventually (if the player guesses correctly) all of the treasure
chests will have been removed. (Remember, by "treasure chest" we mean the two-item lists
of the XY coordinates inside tlieeChests list.)

When all the treasure chests have been found on the board and removed from
theChests , the theChests list will have a length of 0. Whenthat happens, we displa)
congratulations to the player, and then execute a break statement to break out of this
while loop. Exeution will then move down to line 209 (the first line after the while-
block.)

Checking if the Player has Lost

||207. sonarDevices -= 1 ||

This is the last line of the while loop that started on line 179. We decrement the
sonarDevices variable because the player has used one. If the player keeps missing the
treasure chests, eventuadignarDevices will be reduced to 0. After this line, execution
jumps back up to line 179 so we can re-evaluatevttiee statement's condition (which is
sonarDevices > 0). If sonarDevices is 0, then the condition will be False and
execution will continue outside the while-block on line 209.

But until then, the condition will remain True and the player can keep making guesses.

209. if sonarDevices == 0:

210. print('We\'ve run out of sonar devices! Now we
have to turn the ship around and head")

211. print(‘for home with treasure chests still out
there! Game over.")

212. print(The remaining chests were here:’)

213. for X, y in theChests:

214, print(" %s, %s' % (X, y))

Line 209 is the first line outside the while loop. By this point the game is over. But how
do we tel if the player won or not? The only two places where the program execution would
have left thewhile loop is on line 179 if the condition failed. In that case,
sonarDevices would be 0 and the player would have lost.

237

The second place is tbreak statement on line 205. That statement is executhe
player has found all the treasure chests before running out of sonar devices. In that case,
sonarDevices woul d besome value greater th@n

Lines 210 to 212 will tell the player they've lost. Theloop on line 213 will go
through the treasure chests remaining in theChests and show their location to the player
so that they know where the treasure chests had been lurking.

Asking the Player to Play Again, and the sys. exi t () Function

217. sys.exit()

216. if not playAgain(): “

Win or lose, we call the playAgain() function to let the player type in whether they
want to keep playing or not. If not, thptayAgain() returns False. The not operator
changes this to True, making the if statement's conditidmue and the sys.exit()
function is executed. This will cause the program to terminate.

Otherwise, execution jumps back to the beginning of the while loop on line 171.

Summary: Review of our Sonar Game

Remember how our Tic Tac Toe game numbered the spaces on the Tic Tac Toe board 1
through 97 This sort of coordinate system might have been okay for a board with less than
ten spaces. But the Sonar board has nine hundred spaces! The Cartesian coordinate system
we learned in the last chapter really makes all these spaces manageable, especially when
our game needs to find the distance between two points on the board.

Game boards in games that use a Cartesian coordinate system are often stored in a list of
lists so that the first index is the x-coordinate and the second index is the y-coordinate. This
make accessing a coordinates look bleard[x][y].

These data structures (such as the ones used for the ocean and locations of the treasure
chests) make it possible to have complicated concepts represented as data in our program,
and our game programs become mostly about modifying these data structures.

In the next chapter, we will be representing letters as numbers using their ASCII
numbers. (This is the same ASCII term we used in "ASCII art" previously.) By
representing text as numbers, we can perform mathematically operations on them which
will encrypt or decrypt sect message

238

Chapter] l

Caesar Cipher

Topics Covered In This Chapter:

Cryptography and ciphers

Enaypting and decrypting

Ciphertext, plaintext, keys, and symbols

The Caesar Cipher

ASCII ordinal values

The chr() and ord() functions

The isalpha() string method

The isupper() and islower() string methods
Cryptanalysis

The brute force technique

The program in this chapter is not really a game, but it is fun to play with nonetheless.
Our program will convert normal English into a secret code, and also convert secret codes
back into regular English again. Only someone who is knowledgeable about secret codes
will be able to understand our secret messages.

Because this program manipulates text in order to convert it into secret messages, we
will learn several new functions and methods that come with Python for manipulating
strings. We will also learn how programs can do math with text strings just as it can with
numbers.

About Cryptography

The science of writing sec codes is callecryptography . Cryptography has bes
239

use(for thousands of years to send secret messages that only the recipie
understand, even if someone captured the messenger and read the coded message. A secret
codesystem is called a cipherThere are thousands of different ciphers that have been
used, each using different techniques to keep the messages a secret.

In cryptography, we call the message that we want to be secpgathtext . The
plaintext could look something like this:

Hello there! The keys to the house are hidden under the
reddish flower pot.

When we convert the plaintext into the encoded message, we calhthypting the
plaintext. The plaintext is encrypted into the ciphertexthe ciphertext looks like random
letters (also called garbage daty and we cannot understand what the original plaintext
was by just looking at the ciphertext. Here is an example of some ciphertext:

Ckkz fkx kj becgnejc kgp pdeo oaynap iacowca!

But if we know about the cipher used to encrypt the message, we can debeypt
ciphertext back to the plaintext. (Decryption is the opposite of encryption.)

Many ciphers also use keyéeys are secret values that let you decrypt ciphertext that
was encrypted using a specific cipher. Think of the cipher as being like a door lock.
Although all the door locks of the same type are built the same, but a particular lock will
only unlock if you have the key made for that lock.

The Caesar Cipher

When we encrypt a
message using a cipher, A|B|C[DJE|F
we will choose the key
that is used to encrypt and
decrypt this message. The
key for our Caesar Cipher
will be a number from 1 to
26. Unless you know the
key (that is, know the AIBICIDIEI|F
number), you will not be
able to decrypt the
encrypted message.

Figure 1:+1: Shifting over letters by three spaiHere, B becomes |

The Caesar Cipher was one of the earliest ciphers ever invented. In this cipher, you
encrypt a message by taking each letter in the message (in cryptography, these letters are
called symbols because they can be letters, numbers, or any other sign) and replacing it
with a "shifted" letter. If you shift the letter A by one space, you get the letter B. If you shift
the letter A by two spaces, you get the letter C. Figure 14-1 is a picture of some letters
shifted over by space:

240

14 - Caesar Cipher
To get each shifted letter, draw out a row of boxes with letter of the alphabet. Th¢

draw a second row of boxes under it, but start a certain number of spaces over. When you
get b the leftover letters at the end, wrap around back to the start of the boxes. Here is an
example with the letters shifted by three spaces:

[AIB[CIDIE[FIGIHIT|] IKILINIITI?ITI?IF;ISI*I'II'II]II\irlhfi’lilil‘rl‘lzl
[XIY[Z[A[B[CIDIE[FIGIH[T[I|K[L[MIN[O[P]QIR]S [T |U[V[W]

Alphabet shifted by 3 spaces.
Figure 14-2: The entire alphabet shifted by three spaces.

The nunber of spaces we shift is the key in the Caesar Cipher. The example above
shows the letter translations for the key 3.

Using a key of 3, if we encrypt the plaintext "Howdy", then the "H" becomes "E". The
letter "0" becomes "I". The letter "w" becomes "t". The letter "d" becomes "a". And the
letter "y" becomes "v". The ciphertext of "Hello" with key 3 becomes "Eltav".

We will keep any non-letter characters the same. In order to decrypt "Eltav" with the key
3, we just go from the bottom boxes back to the top. The letter "E" becomes "H", the letter
"I" becomes "0", the letter "t" becomes "w", the letter "a" becomes "d", and the letter "v"
becomes "y" to form "Howdy".

You can find out more about the Caesar Cipher from Wikipedia at
http://en.wikipedia.org/wiki/Caesar_cipher

ASCII, and Using Numbers for Letters

How do we implement this shifting of the letters in our program? We can do this by
representing each letter as a number (called an orglimald then adding or subtracting
from this number to form a new number (and a new letter). AGCdinounced "ask-ee"
and stands for American Standard Code for Information Interchange) is a code that
connects each character to a number between 32 and 127. The numbers less than 32 refer to
"unprintable" characters, so we will not be using them.

The capital letters "A" through "Z" have the ASCII numbers 65 through 90. The

lowercase letters "a" through "z" have the ASCIl numbers 97 through 122. The numeric
digits "0" through "9" have the ASCII numbers through 57

241

Table 1-1: The ASCI Table

32 (space) 48 0 64 @ 80 H 96 i 112 p
33 ! 49 1| 65 A 81 Q 97 a 113 q
34 " 50 2| 66 B| 82 R 98 b 114

35 # 51 3| 67 C 83 S 99 C 115 $
36 $ 52 4| 68 D| 84 T 100 d 116 t
37 % 53 5| 69 E 85 U 101 e 117 u
38 & 54 6| 70 F 86 \% 102 f 118 v
39 ' 55 7| 71 G 87 W 103 g 119 W
40 (56 8| 72 H 88 X 104 h 120 X
41) 57 9| 73 1| 8 Y| 105 i| 121 vy
42 * 58 : 74 J 90 Z 106] 122 z
43 + 50 ;| 75 K| 91 107 k| 123 {
44 , 60 <| 76 L 92 \ 108 I 124 |
45 . 61 =| 77 M| 93] 109 m| 125 }
46 : 62 >| 78 N 94 A 110 n 126 ~
47 / 63 ?| 79 @) 95 _ 111 0

So if we wanted to shift "A" by three spaces, we first convert it to a number (65). Then
we add 3 to 65, to get 68. Then we convert the number 68 back to a letter ("D"). We will
use the chr() and ord() functions to convert between letters and numbers.

For example, the letter "A" is represented by the number 65. The letter "m" is
represented by the number 109. A table of all the ASCII characters from 32 to 12 is in
Table 14-1.

The chr() and ord() Functions

The chr() function (pronounced "char", short for "character”) takes an integer ASCII
number for the parameter and returns the single-character stringrd{hé&unction
(short for "ordinal”) takes a single-character string for the parameter, and returns the integer
ASCII value for that character. Try typing the following into the interactive shell:

i >>> chr(65)
W
i >>> ord('A)
| 65

242

14 - Caesar Cipher
>>> chr(65+8)
I|I
>>> chr(52)
l4l
>>> chr(ord('F"))
=
>>> ord(chr(68))
68
>>>

On thethird line, chr(65+8) evaluates to chr(73). If you look at the ASCII table,
you can see that 73 is the ordinal for the capital letter "I". On the fifthdiméyrd
('F") evaluates to chr(70) which evaluates to 'F'. Feeding the result of ord() to
chr() will give you back the original argument. The same goes for feeding the result of
chr() to ord(), as shown by the sixth line.

Usingchr() and ord() will come in handy for our Caesar Cipher program. They are
also helpful when we need to convert strings to numbers and numbers to strings.

Sample Run of Caesar Cipher

Here is a sample run of the Caesar Cipher program, encrypting a message:

Do you wish to encrypt or decrypt a message?

encr ypt

Enter your message:

The sky above the port was the color of television, tune dtoa
dead channel.

Enter the key number (1-26)

13

Your translated text is:

Gur fxI nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharg gb n
grng punaary.

Now we will run the program and decrypt the text that we just
encrypted.

Do you wish to encrypt or decrypt a message?

decrypt

Enter your message:

Gur fxI nobir gur cbeg jnf gur pbybe bs gryrivfvba, ghar ggbn
grng punaary.

Enter the key number (1-26)

13

Your translated text is:

The sky above the port was the color of television, tuned to a
dead channel.

On this run we will try to decrypt the text that was encrypted, but we will us wrong
243

key. Remember that if you do not know the correct key, the decrypt will just be
garbage data.

Do you wish to encrypt or decrypt a message?

decrypt

Ent er your message:

Gur fxI nobir gur cbeg jnf gur pbybe bs gryrivfvba, gha rqgbn
grng punaary.

Ente r the key number (1-26)

15

Your translated text is:

Rfc giw yzmtc rfc nmpr uyq rfc amjmp md rcjctgggml, rsicb rmy

bcyb afylicj.

Caesar Cipher's Source Code

Hereis the source code for the Caesar Cipher program. If you don't want to type all of
this code in, you can visit this book's website at the URL
http://inventwithpython.com/chapter14 and follow the instructions to download the source
code. After you type this code in, save the file as cipher.py

cipher.py

This code can be downloaded from http://inventwithpython.com/cipher.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # Caesar Cipher
2.
3. MAX_KEY_SIZE = 26
4,
5. def getMode():
6. while True:
7. print('Do you wish to encrypt or decrypt a
message?')
8. mode = input().lower()
9. if mode in 'encrypt e decrypt d'.split():
10. return mode
11. else:
12. print('Enter either "encrypt" or "e" or
"decrypt" or "d".")
13.

14. def getMessage():
15. print('Enter your message:’)
16. returninput()

17.

18. def getKey():

19. key=0

20. while True:

21. print('Enter the key number (1-%s)' %

244

14 - Caesar Cipher

(MAX_KEY_SIZE))
22. key = int(input())
23. if (key >= 1 and key <= MAX_KEY_SIZE):
24. return key
25.
26. def getTranslatedMessage(mode, message, key):
27. if mode[0] =="d"
28. key = -key
29. translated ="
30.
31. for symbol in message:
32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key
35.
36. if symbol.isupper():
37. if num > ord('Z"):
38. num -= 26
39. elif num < ord('A"):
40. num += 26
41. elif symbol.islower():
42. if num > ord('z"):
43. num -= 26
44. elif num < ord('a’):
45. num += 26
46.
47. translated += chr(num)
48. else:
49. translated += symbol
50. return translated
51.
52. mode = getMode()
53. message = getMessage()
54. key = getKey()
55.
56. print("Your translated text is:")
57. print(getTranslatedMessage(mode, message, key))

How the Code Works: Lines 1 to 34

This code is much shorter compared to our other games. The encryption and decryption
processes are the just the reverse of the other, and even then they still share much of the
same code. Let's look at how each line works.

1. # Caesar Cipher
2.
3. MAX_KEY_SIZE = 26

The first line is simply a comment. The Caesar Cipher is one cipher of a type of ciphers
called simple substitution ciphe Simple substitution ciphers are ciphers that repla
245

one symbol in the plaintext with one (and only one) symbol in the ciphertext a "G"
was substituted with "Z" in the cipher, every single "G" in the plaintext would be replaced
with (and only with) a "Z".

MAX_KEY_SIZE is a variable that stores the integer 26 iINMAX_KEY_SIZE reminds
us that in this program, the key used in our cipher should be between 1 and 26.

Deciding to Encrypt or Decrypt

5. def getMode():
6. while True:
7. print('Do you wish to encrypt or decrypt a
message?')
8. mode = input().lower()
9. if mode in 'encrypt e decrypt d".split():
10. return mode
11. else:
12. print('Enter either "encrypt" or "e" or
"decrypt" or "d".")

The getMode() function will let the user type in if they want to encrypt or decrypt the
message. The return value of input() (which then has the lower() method called on it,
which returns the lowercase version of the string) is storatbote. Theif statement's
condition checks if the string stored in mode exists in the list returned by 'encrypt e
decrypt d'.split(). This list is ['lencrypt’, ‘e, 'decrypt’, 'd'] , but
it is easier for the programmer to just typéeincrypt e decrypt d'.split()
and not type in all those quotes and commas. But you can use whatever is easiest for you;
they both evaluate to the same list value.

This function will return the first charactermmode as long as mode is equal to
‘encrypt’, ‘e, 'decrypt’, or 'd". This means that getMode() will return the
string ‘e’ or the string 'd'.

Getting the Message from the Player

14. def getMessage():
15. print(Enter your message:’)
16. returninput()

The getMessage() function simply gets the message to encrypt or decrypt from the
user and uses this string as its return v

246

14 - Caesar Cipher

Getting the Key from the Player

18. def getKey():

19. key =0

20. while True:

21. print('Enter the key number (1-%s)' %
(MAX_KEY_SIZE))

22. key = int(input())

23. if (key >= 1 and key <= MAX_KEY_SIZE):

24. return key

The getKey() function lets the player type in key they will use to encrypt or decrypt
the message. The while loop ensures that the function only returns a valid key. A valid
key here is one that is between the integer values 1 and 26 (remember that
MAX_KEY_SIZE will only have the value 26 because it is constant). It then returns this
key. Remember that on line 22 that key was set to the integer version of what the user
typed in, and so getKey() returns an integer.

Encrypt or Decrypt the Message with the Given Key

26. def getTranslatedMessage(mode, message, key):
27. if mode[0] == 'd"

28. key = -key

29. translated ="

getTranslatedMessage() is the function that does the encrypting and decrypting
in our program. It has three parameters. mode sets the function to encryption mode or
decryption mode. message is the plaintext (or ciphertext) to be encrypted (or decrypted).
key is the key that is used in this cipher.

The first line in the getTranslatedMessage() function determines if we are in
encryption mode or decryption mode. If the first letter in the mode variable is the string
'd’, then we are in decryption mode. The only difference between the two modes is that in
decryption mode, the key is set to the negative version of itskylfvas the intege2,
then in decryption mode we set it to -22. The reason for this will be explained later.

translated is the string that will hold the end result: either the ciphertext (if we are
encrypting) or the plaintext (if we are decrypting). We will only be concatenating strings to
this variable, so we first store the blank string in translated. (A variable must be
defined with some string value first before a string can be concatenated to it.)

The isalpha() String Method

The isalpha() string method will return True if the string is an uppercase or
247

lowercase letter from A Z. If the string contains any n-letter characters, the
isalpha() will return False. Try typing the following into the interactive shell:

>>> "Hello".isalpha()
True
>>> "Forty two'.isalphal()
False
>>> 'Fortytwo'.isalpha()
True
>>>'42'.isalpha()
False
>>> " isalpha()
False
>>>
As you can see, 'Forty two'.isalpha() will return False because'Forty
two' has a space in it, which is a non-letter charactéortytwo'.isalpha()
returns True because it does not have this spat@.isalpha() returns False

because both '4' and '2' are non-letter characters. And ".isalpha() is False

because isalpha() only returns True if the string has only letter characters and is not
blank.

We will use thasalpha() method in our program next.

31. for symbol in message:

32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key

We will run a for loop over each letter (remember in cryptography they are called
symbols) in the messagestring. Strings are treated just like lists of single-character
strings. If message had the strintHello’, then for symbol in 'Hello' would
be the same as for symbol in ['H', 'e’, 'I', 'I', '0] . On each
iteration through this loop, symbobill have the value of a letter message.

The reason we have the if statement on line 32 is because we will only encrypt/decrypt
letters in the message. Numbers, signs, punctuation marks, and everything else will stay in
their untranslated form. The num variable will hold the integer ordinal value of the letter
stored in symbol. Line 34 then "shifts" the value mum by the value in key

The isupper() and islower() String Methods

The isupper() and islower() string methods (which are on line 36 and 41) work
248

14 - Caesar Cipher
in a way that is very similar to tlisdigit() andisalpha() methodsisupper

() wi Il return True if the string it is called on contains at least one uppercase letter and no
lowercase letters. islower() returns True if the string it is called on contains at least

one lowercase letter and no uppercase letters. Otherwise these methods return False. The
existence of non-letter characters like numbers and spaces does not affect the outcome.
Although strings that do not have any letters, including blank strings, will also return

False. Try typing the following into the interactive shell:

>>>"'HELLO'.isupper()
True

>>> 'hello'.isupper()
False

>>> 'hello'.islower()
True

>>> "Hello".islower()
False

>>>'LOOK OUT BEHIND YOU!.isupper()
True
>>>'42".isupper()
False
>>>'42'".islower()
False

>>> " isupper()

False

>>> " islower()

False

>>>

How the Code Works: Lines 36 to 57

The process of encrypting (or decrypting) each letter is fairly simple. We want to apply
the same Python code to every letter character in the string, which is what the next several
lines of code do.

Encrypting or Decrypting Each Letter

36. if symbol.isupper():
37. if num > ord('Z"):
38. num -= 26

39. elif num < ord(‘'A"):
40. num += 26

This code checks if the symbol is an uppercase letter. If so, there are two special cases
we need to worry about. What if symbol was 'Z' anckey was 47 If that were the case,

249

the value onumhere would be the charac'™ (The ordinal of'?" is94). But " isn't
a letter at all. We wanted the ciphertext to "wrap around” to the beginning of the alphabet.

Theway we can do this is to check if key has a value larger than the largest possible
letter's ASCII value (which is a capital "Z"). If so, then we want to subte&ci{because
there are 26 letters in total) from num. After doing this, the valuiof is68, which is
the ASCII value for 'D'.

41, elif symbol.islower():
42. if num > ord('z"):
43. num -= 26

44, elif num < ord('a’):
45, num += 26

If the symbol is a lowercase letter, the program runs code that is very similar to lines 36
through 40. The only difference is that we use ord('z") andord('a’) instead of ord
('Z") and ord('A").

If we were in decrypting mode, then key would be negative. Then we would have the
special case where num -= 26 might be less than the smallest possible value (which is
ord(‘A"), that is, 65). If this is the case, we want to a@® to num to have it "wrap
around".

47. translated += chr(num)
48. else:
49, translated += symbol

The translated string will be appended with the encrypted/decrypted character. If
the symbol was not an uppercase or lowercase letter, then the else-block on line 48 would
have executed instead. All the code in the else-block does is append the original symbol to
the translated string. This means that spaces, numbers, punctuation marks, and other
characters will not be encrypted (or decrypted).

|| 50. return translated ||

Thelast line in thegetTranslatedMessage() function returns the translated
string.

The Start of the Program

52. mode = getMode()
53. message = getMessage()
54. key = getKey()

250

14 - Caesar Cipher
55.
56. print("Your translated text is:")
57. print(getTranslatedMessage(mode, message, key))

This is the main part of our program. We call each of the three functions we have defined
above n turn to get the mode, message, and key that the user wants to use. We then pass
these three values as arguments to getTranslatedMessage() , whose return value (the
translated string) is printed to the user.

Brute Force

That's the entire Caesar Cipher. However, while this cipher may fool some people who
don't understand cryptography, it won't keep a message secret from someone who knows
cryptanalysis. While cryptography is the science of making codes, cryptanalisibe
science of breaking codes.

Do you wish to encrypt or decrypt a message?
encrypt

Enter your message:

Doubts may not be pleasant, but certainty is absurd.
Enter the key number (1-26)

8

Your translated text is:

Lwcjba uig vwb jm xtmiaivb, jcb kmzbigvbg ga ijaczl.

The whole point of cryptography is that so if someone else gets their hands on the
encryptel message, they cannot figure out the original unencrypted message from it. Let's
pretend we are the code breaker and all we have is the encrypted text:

Lwcjba uig vwb jm xtmiaivb, jcb kmzbigvbg qa ijaczl.

One method of cryptanalysis is called brute foRreite force is the technique of trying
every single possible key. If the cryptanalyst knows the cipher that the message uses (or at
least guesses it), they can just go through every possible key. Because there are only 26
possible keys, it would be easy for a cryptanalyst to write a program than prints the
decrypted ciphertext of every possible key and see if any of the outputs make sense. Let's
add a brute force feature to our program.

Adding the Brute Force Mode to Our Program

First, change lines 7, 9, and 12 (which are in the getMode() furant) to look like the
following (the changes are in bold):

|| 5. def getMode(): "
251

6. while True:
7. print('Do you wish to encrypt or decrypt or brute
force a message?’)
8. mode = input().lower()
9. if mode in 'encrypt e decrypt d brute b ‘.split():
10. return mode[0]
11. else:
12. print('Enter either "encrypt" or "e" or
"decrypt" or "d" or "brute" or "b" N

This will let us select "brute force" as a mode for our program. Then modify and add the
following changes to the main part of the program:

52. mode = getMode()

53. message = getMessage()

54. if mode[0] !="b"

55. key = getKey()

56.

57. print("Your translated text is:")

58. if mode[0] !="b"

59. print(getTranslatedMessage(mode, message, key))

60. else:
61. for key in range(1, MAX_KEY_SIZE + 1):
62. print(key, getTranslatedMessage('decrypt’,

message, key))

These changes make our program ask the user for a key if they are not in "brute force"
mode If they are not in "brute force" mode, then the origgetilranslatedMessage
() callis made and the translated string is printed.

However, otherwise we are in "brute force" mode, and we run a
getTranslatedMessage() loop that iterates from 1 all the way up to
MAX_KEY _SIZE(which is 26). Remember that when trange() function returns a list
of integers up to but not including the second parameter, which is why we- Haviéis
program will print out every possible translation of the message (including the key number
used in the translation). Here is a sample run of this modified prc

252

14 - Caesar Cipher

Do you wish to encrypt or decrypt or brute force a

message”?

brute

Enter your message:

Lwcjba uig vwb jm xtmiaivb, jcb kmzbigvbg qga ijaczl.

Your translated text is:

1 Kvbiaz thf uva il wslhzhua, iba jlyahpuaf pz hizbyk.

2 Juahzy sge tuz hk vrkgygtz, haz ikxzgotze oy ghyaxj.

3 ltzgyx rfd sty gj uqjfxfsy, gzy hjwyfnsyd nx fgxzwi.

4 Hsyfxw gec rsx fi tpiewerx, fyx givxemrxc mw efwyvh.

5 Grxewv pdb grw eh sohdvdgw, exw fhuwdlgwb Iv devxug.

6 Fqwdvu oca pqgv dg rngcucpv, dwv egtvckpva ku cduwtf.

7 Epvcut nbz opu cf gmfbtbou, cvu dfsubjouz jt bctvse.

8 Doubts may not be pleasant, but certainty is absurd. |
Cntasr Izx mns ad okdzrzms, ats bdgszhmsx hr zartqc.

10 Bmszrq kyw Imr zc njcyqylr, zsr acpryglrw gqg yzqspb.

11 Alrygp jxv kig yb mibxpxkaq, yrq zbogxfkqv fp Xyproa.

12 Zkgxpo iwu jkp xa lhawowjp, xgqp yanpwejpu eo wxognz.

13 Yjpwon hvt ijo wz kgzvnvio, wpo xzmovdiot dn vwnpmy.

14 Xiovnm gus hin vy jfyumuhn, von wylnuchns cm uvmolx.

15 Whnuml ftr ghm ux iextltgm, unm vxkmtbgmr bl tulnkw.

16 Vgmtlk esq fgl tw hdwsksfl, tml uwjlsaflq ak stkmjv.

17 Uflskj drp efk sv gevrjrek, slk tvikrzekp zj rsjliu.

18 Tekrji cqo dej ru fbuqiqgdj, rkj suhjgydjo yi grikht.

19 Sdjgih bpn cdi gt eatphpci, gji rtgipxcin xh pghjgs.

20 Rciphg aom bch ps dzsogobh, pih gsthowbhm wg opgifr.

21 Qbhogf znl abg or cyrnfnag, ohg pregnvagl vf nofheq.

22 Pagnfe ymk zaf nq bxgmemzf, ngf oqdfmuzfk ue mnegdp.

23 Ozfmed xlj yze mp awpldlye, mfe npceltyej td Imdfco.

24 Nyeldc wki xyd lo zvokckxd, led mobdksxdi sc klcebn.

25 Mxdkcb vjh wxc kn yunjbjwe, kdc Inacjrwch rb jkbdam.

26 Lwcjba uig vwb jm xtmiaivb, jcb kmzbigvbg ga ijaczl.

After looking over each row, you can see that the 8th message is not garbage, but plain
English! The cryptanalyst can deduce that the original key for this encrypted text must have
been 8. This brute force would have been difficult to do back in the days of Caesars and the
Roman Empire, but today we have computers that can quickly go through millions or even
billions of keys in a short time. You can even write a program that can recognize when it
has found a message in English, so you don't have read through all the garbage text.

Summary: Reviewing Our Caesar Cipher Program

Computers are very good at doing mathematics. When we create a system to translate
some piece of information into numbers (such as we do with text and ASCII or with space
and coordinate systems), computer programs can process these numbers very quickly and
efficiently.

253

But while our Caes cipher program here can encrypt messages that will keeg
secret from people who have to figure it out with pencil and paper, it won't keep it secret
from people who know how to get computers to process information for them. (Our brute
force mode proves this.) And there are other cryptographic ciphers that are so advanced that
nobody knows how to decrypt the secret messages they make. (Except for the people with
the key of course!)

A large part of figuring out how to write a program is figuring out how to represent the
information you want to manipulate as numbers. | hope this chapter has especially shown
you how this can be done. The next chapter will present our final game, Reversi (also
known as Othello). The Al that plays this game will be much more advanced than the Al
that played Tic Tac Toe in chapter 9. In fact, the Al is so good, that you'll find that most of
the time you will be unable to beat

254

Chapter I 5

Reversi

Topics Covered In This Chapter:

e The bool() Fundion
o Evaluating Non-Boolean Values as Booleans

How to Play Reversi

In this chapter we will make a game called Reversi. Reversi (also called Othello) is a
board game that is played on a grid (so we will use a Cartesian coordinate system with XY
coordinates, like we did with Sonar.) It is a game played with two players. Our version of
the game will have a computer Al that is more advanced than the Al we made for Tic Tac
Toe. In fact, this Al is so good that it will probably beat you almost every time you play. (|
know | lose whenever | play against it!)

If you would like to see a video of Reversi being played, there is a demonstration on this
book's website. Go to the URL http://inventwithpython.com/videos and find the "Reversi
Demo Video" video.

Reversi has an 8 x 8 board with tiles that are black on one side and white on the other
(our game will use O's and X's though). The starting board looks like Figure 15-1. Each
player takes turn placing down a new tile of their color. Any of the opponent's tiles that are
between the new tile and the other tiles of that color is flipped. The goal of the game is to
have as many of the tiles with your color as possible. For example, Figure 15-2 is what it
looks like if the white player places a new white tile on space 5, 6.

255

123456 78 123456 78

@)
Ql®

O/®@O

QO ~] O W B W N
0O ~] O W B~ WM

Figure 15-1: The starting Reversi board

hastwo white tiles and two black tiles. Figure 15-2: White places a new tile.

The black tile at 5, 5 is in between the new white tile and the existing white tile at 5, 4.
Tha black tile is flipped over and becomes a new white tile, making the board look like
Figure 15-3. Black makes a similar move next, placing a black tile on 4, 6 which flips the
white tile at 4, 5. This results in a board that looks like Figure 15-4.

1 2345678 1 2 3456 78
1 1
2 2
3 3
4 0 4 Q|Q
5 QIO 5 0
6 ® 6 ®0
7 7
8 8
Figure 15-3: White's move will Figure 15-4: Black places a new tile,
flip over one of black's tiles. which flips over one of white's tiles.

Tiles in all directions are flipped as long as they are in between the player's new tile and
existing tile. Below in Figure 15-5, the white player places a tile at 3, 6 and flips black tiles
in both directions (marked by the lines.) The result is in Figure 15-6.

256

15 - Reversi

1 2 3 456 7 8 1 2 3 456 7 8
1 1
2 2
3 3
4 @ 4 L (@]
5 20 5 QIO
6 G 6 Qoo
7 7
8 8

Figure 15-5: White's second move

at 3, 6 vill flip two of black's tiles. Figure 15-6: The board after white's second move.

As you can see, each player can quickly grab a majority of the tiles on the board in just
one or wo moves. Players must always make a move that captures at least one tile. The
game ends when a player either cannot make a move, or the board is completely full. The
player with the most tiles of their color wins.

The basic strategy of Reversi is to look at which move would turn over the most tiles.
But you should also consider taking a move that will not let your opponent recapture many
tiles after your move. Placing a tile on the sides or, even better, the corners is good because
there is less chance that those tiles will end up between your opponent's tiles. The Al we
make for this game will simply look for any corner moves they can take. If there are no
corner moves available, then the computer will select the move that claims the most tiles.

You can learn more about Reversi from Wikipedia: http://en.wikipedia.org/wiki/Reversi

Sample Run

Notice that our version of Reversi doesn't use black and white tiles because the text that
our program creates will always be the same color. Instead, we will use X's and O's to
represent the human and computer players.

Welcome to Reversi!
Doy ou want to be X or O?
X
The p layer will go first.
12345678
S Y U S Y S

Frrrrrn
257

TR R R S S S S S

1]

I
I
I
I
SRS S S S
I
I
I
I
I

TR R R S S S S S

TR R R S S S S S
TR R R S S S S S

TR R R S S S S S

8

1 23 456 7 8
TR R R S S S S S

Enter your move, or type quit to end the game, or hints to turn

off/on hints.

You have 2 points. The computer has 2 points.
53

TR R R S S S S S

1

SRS S S S

|
I
I
I>|<I
I
|
I
|

I

I
SRS S S S

I

I

I

I

SR S S S

I(|3IXI

I
-—+

I
I

I
-—+

I

I
—+

I

I
I
I
I
TR R R S S S S S

258

[T
]| ||

N T T Y O O

TR R R S S S S S

(N
2 I O I O B B B
(I N N N

TR R R S S S S S

You have 4 points. The computer has 1 points.

Press Enter to see the computer's move.
...skipped for brevity...

123 45¢6 7 8

S SN T ST SRS S S S ¥
RN
1/0|0|O|O|O|O|0O|O]
O I I B B

PR S S S S S
L
2|0]0|O|O|O[O|O|O]|
O I I B B

PR SN S S S S S
NN
3|]0|0|O|O|O|O|O]|O]
O T I B B B

S S T ST SRS S S S ¥
R
4|0|O[X|O|O|O|O|O]
O T I B B B

S S T ST SRS S S S ¥
RN
5|0|0|O|X|O|X]|O|X]
O I B B B

S SR T T SRS S S S ¥
RN
6|(|3I|X|IO|||X|X|IOIOI |

I
ORI S S S S
I |

+
N ||
7|0 X[X]O]O[O[O[O]
L0 I
+
I

— +—

— 4y —

I |
ORI S S S S
L
8IO|X[X[|O]| | |X] |
O T I B B B

ORISR S S S S S

You have 12 points. The computer has 48 points.
Enter your move, or type quit to end the game, or hints to turn

off/on hints.
86

15 - Reversi

259

X scored 15 points. O scored 46 points.

You lost. The computer beat you by 31 points.
Do you want to play again? (yes or no)

no

As you can see, the Al was pretty good at beating me. To help the player out, we'll
progran our game to provide hints. If the player types 'hints' as their move, they can
toggle the hints mode on and off. When hints mode is on, all the possible moves the player
can make will show up on the board as '.' characters, like this:

123 456 7 8
R A A S S SRS A N S

TR SR R S R S S S

L
SI I 110100 [X] |

TR SR R S R S S S

1
6] | R
I I N I I

|
SRS S S M S S,
|

Reversi's Source Code

Reversi is a mammoth program compared to our previous games. It comes in over 300
lines long! (But don't worry, many of these lines are just comments or blank lines to space
out the code and make it more readable.) As always, you don't have to typ program

260

15 - Reversi
before reading this chapter. And you can also download the prog going to this
book's website at the URL, http://inventwithpython.com/chapter15 and following the

instructions online.

As with our other programs, we will first create several functions to carry out Reversi-
related tasks that the main section of our program will call. Roughly the first 250 lines of
code are for these helper functions, and the last 50 lines of code implement the Reversi
game itself.

reversi.py

This code can be downloaded from http://inventwithpython.com/reversi.py

If you get errors after typing this code in, compare it to the book's code with the online
diff tool at http://inventwithpython.com/diff or email the author at
al@inventwithpython.com

1. # Reversi
2.

3. import random

4. import sys

5.

6. def drawBoard(board):
7

This function prints out the board that it was
passed. Returns None.

8. HLINE ="' H-dommommommom oottt
9. VLINE="[| [[[[TV
10.

11. print" 1 2 3 4 5 6 7 8)
12. print(HLINE)
13. fory in range(8):

14. print(VLINE)

15. print(y+1, end="")

16. for x in range(8):

17. print(’| %s' % (board[x][y]), end="")
18. print(‘]")

19. print(VLINE)

20. print(HLINE)

21.

22.

23. def resetBoard(board):

24. # Blanks out the board it is passed, except for the
original starting position.

25. for x in range(8):

26. for y in range(8):
27. board[x][y] ="'
28.

29. # Starting pieces:
30. board[3][3] =X
31. board[3][4] ='O'
32. board[4][3] ='O'
33. board[4][4] =X
34.

35.

36. def getNewBoard():

261

37. # Creates a brand new, blank board data structure.
38. board =]
39. foriin range(8):

40. board.append([' '] * 8)
41.

42. return board

43.

44,

45. def isValidMove(board, tile, xstart, ystart):

46. # Returns False if the player's move on space xstart,
ystart is invalid.

47. #Ifitis a valid move, returns a list of spaces that
would become the player's if they made a move here.

48. if board[xstart][ystart] ="' or not isOnBoard
(xstart, ystart):

49. return False

50.

51. board[xstart][ystart] = tile # temporarily set the
tile on the board.

52.

53. if tile == X"

54. otherTile ='O'
55. else:

56. otherTile = 'X'
57.

58. tilesToFlip =]
59. for xdirection, ydirection in [[0, 1], [1, 1], [1, O],
[1! _1]! [O, '1]1 ['1! '1]! ['1! 0]! ['11 1]]

60. X, Y = xstart, ystart

61. X += xdirection # first step in the direction

62. y += ydirection # first step in the direction

63. if isOnBoard(x, y) and board[x][y] == otherTile:

64. # There is a piece belonging to the other
player next to our piece.

65. X += xdirection

66. y += ydirection

67. if not isOnBoard(x, y):

68. continue

69. while board[x][y] == otherTile:

70. X += xdirection

71. y += ydirection

72. if not isOnBoard(X, y): # break out of
while loop, then continue in for loop

73. break

74. if not isOnBoard(x, y):

75. continue

76. if board[x][y] == tile:

77. # There are pieces to flip over. Go in the

reverse direction until we reach the original space,
noting all the tiles along the way.

78. while True:

79. x -= xdirection

80. y -= ydirection

81. if x == xstart and y == ystart:

262

82.
83.

break
tilesToFlip.append([x, y])

84.

85.
86.

87.
88.

board[xstart][ystart] ="' # restore the empty space
if len(tilesToFlip) == 0: # If no tiles were flipped,
this is not a valid move.
return False
return tilesToFlip

89.
90.

91

92.

93.

. def isOnBoard(x, y):

Returns True if the coordinates are located on the
board.

returnx >=0and x<=7andy >=0andy <=7

94.
95.

96

97.

98.

. def getBoardWithValidMoves(board, tile):

Returns a new board with . marking the valid moves
the given player can make.

dupeBoard = getBoardCopy(board)

99.

100.
101.
102.

for X, y in getValidMoves(dupeBoard, tile):
dupeBoard[x][y] ="'
return dupeBoard

103.
104.

105

106.

107.

. def getValidMoves(board, tile):

Returns a list of [x,y] lists of valid moves for the
given player on the given board.

validMoves =[]

108.

109.
110.
111.
112.
113.

for x in range(8):
for y in range(8):
if isValidMove(board, tile, x, y) != False:
validMoves.append([X, Y])
return validMoves

114.
115.

116

117.

118.
119.
120.
121.
122.
123.
124.
125.
126.

. def getScoreOfBoard(board):
Determine the score by counting the tiles. Returns a
dictionary with keys 'X' and 'O".
xscore =0
oscore =0
for x in range(8):
for y in range(8):
if board[x][y] == 'X"
xscore +=1
if board[x][y] =='O"
oscore +=1
return {'X":xscore, 'O".0score}

127.
128.

129

130.

. def enterPlayerTile():
Let's the player type which tile they want to be.

15 - Reversi

263

264

131.

132.
133.
134.
135.

Returns a list with the player's tile as the first
it em, and the computer's tile as the second.
tile ="
while not (tile == 'X" or tile =="'0"):
print('Do you want to be X or O?")
tile = input().upper()

136.

137.

138.
139.
140.
141.

the first element in the tuple is the player's tile,
the second is the computer's tile.

if tile =="X":
return ['X', 'O"]
else:

return ['O', 'X']

142.
143.

144

145.
146.
147.
148.
149.

. def whoGoesFirst():
Randomly choose the player who goes first.
if random.randint(0, 1) == 0:
return ‘computer’
else:
return 'player’

150.
151.

152

153.

154.
155.

. def playAgain():
This function returns True if the player wants to
play again, otherwise it returns False.
print('Do you want to play again? (yes or no)')
return input().lower().startswith('y")

156.
157.

158

159.

160.

161.

. def makeMove(board, tile, xstart, ystart):

Place the tile on the board at xstart, ystart, and
flip any of the opponent's pieces.

Returns False if this is an invalid move, True if it
is valid.

tilesToFlip = isValidMove(board, tile, xstart, ystart)

162.

163.
164.

if tilesToFlip == False:
return False

165.

166.
167.
168.
169.

board[xstart][ystart] = tile
for x, y in tilesToFlip:

board[x][y] = tile
return True

170.
171.

172

173.

174.

. def getBoardCopy(board):

Make a duplicate of the board list and return the
duplicate.

dupeBoard = getNewBoard()

175.

176.
177.
178.

for x in range(8):
for y in range(8):
dupeBoard[x][y] = board[x][y]

15 - Reversi

179.

180. return dupeBoard

181.

182.

183. defisOnCorner(x, y):

184. # Returns True if the position is in one of the four
corners.

185. return(x==0andy==0)or (x==7andy ==0) or
(x==0andy==7)or (x==7andy==7)

186.

187.

188. def getPlayerMove(board, playerTile):

189. # Let the player type in their move.

190. # Returns the move as [X, y] (or returns the strings
‘hints' or 'quit")

191. DIGITS1TO8="'123456 7 8.split()

192. while True:

193. print(Enter your move, or type quit to end the
game, or hints to turn off/on hints.")

194. move = input().lower()

195. if move =="'quit".

196. return ‘quit’

197. if move == 'hints":

198. return ‘hints'

199.

200. if len(move) == 2 and move[0] in DIGITS1TO8 and
move[l] in DIGITS1TOS:

201. x = int(move[0]) - 1

202. y = int(move[l]) - 1

203. if isValidMove(board, playerTile, x, y) ==
False:

204. continue

205. else:

206. break

207. else:

208. print('That is not a valid move. Type the x
digit (1-8), then the y digit (1-8).")

2009. print('For example, 81 will be the top-right
corner.")

210.

211. return[X, y]

212.

213.

214. def getComputerMove(board, computerTile):

215. # Given a board and the computer's tile, determine
where to

216. # move and return that move as a [X, y] list.

217. possibleMoves = getValidMoves(board, computerTile)

218.

219. #randomize the order of the possible moves

220. random.shuffle(possibleMoves)

221.

222. # always go for a corner if available.

223. for x, y in possibleMoves:

265

266

224,
225.

if isOnCorner(x, y):
return [X, Y]

226.

227.

228.
229.
230.
231.
232.
233.
234.
235.
236.

Go through all the possible moves and remember the
best scoring move
bestScore = -1
for X, y in possibleMoves:
dupeBoard = getBoardCopy(board)
makeMove(dupeBoard, computerTile, X, y)
score = getScoreOfBoard(dupeBoard)[computerTile]
if score > bestScore:
bestMove =[x, Y]
bestScore = score
return bestMove

237.
238.

239

240.
241.
242,

. def showPoints(playerTile, computerTile):

Prints out the current score.

scores = getScoreOfBoard(mainBoard)

print("You have %s points. The computer has %s
points.' % (scores[playerTile], scores[computerTile]))

243,
244,
245,

246

. print('Welcome to Reversi!")

247.

248.
249.
250.
251.
252.
253.
254,
255.

while True:
Reset the board and game.
mainBoard = getNewBoard()
resetBoard(mainBoard)
playerTile, computerTile = enterPlayerTile()
showHints = False
turn = whoGoesFirst()
print(‘The ' + turn + " will go first.")

256.

257.
258.
259.
260.
261.

262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

while True:
if turn == 'player".
Player's turn.
if showHints:
validMovesBoard = getBoardWithValidMoves
(mainBoard, playerTile)
drawBoard(validMovesBoard)
else:
drawBoard(mainBoard)
showPoints(playerTile, computerTile)
move = getPlayerMove(mainBoard, playerTile)
if move =="quit"
print('Thanks for playing!)
sys.exit() # terminate the program
elif move == 'hints"
showHints = not showHints
continue
else:
makeMove(mainBoard, playerTile, move[0],

15 - Reversi

move[1])

275.

276. if getValidMoves(mainBoard, computerTile) ==
[:

277. break

278. else:

279. turn = ‘computer’

280.

281. else:

282. # Computer's turn.

283. drawBoard(mainBoard)

284. showPoints(playerTile, computerTile)

285. input('Press Enter to see the computer\'s
move.")

286. X, y = getComputerMove(mainBoard,
computerTile)

287. makeMove(mainBoard, computerTile, X, y)

288.

289. if getValidMoves(mainBoard, playerTile) == []:

290. break

291. else:

292. turn = 'player’

293.

294. # Display the final score.

295. drawBoard(mainBoard)

296. scores = getScoreOfBoard(mainBoard)

297. print('X scored %s points. O scored %s points.' %
(scores['X1, scores['O))

298. if scores[playerTile] > scores[computerTile]:

299. print('"You beat the computer by %s points!
Congratulations!" % (scores[playerTile] - scores
[computerTile]))

300. elif scores[playerTile] < scores[computerTile]:

301. print('"You lost. The computer beat you by %s
points.' % (scores[computerTile] - scores[playerTile]))

302. else:

303. print(The game was a tie!")

304.

305. if not playAgain():

306. break

How the Code Works

The Game Board Data Structure

Before we get into the code, we should talk about the board data structure. This data
strudure is a list of lists, just like the one in our previous Sonar game. The list is created so
thatboard[x][y] will represent the character on space located at position x on the 4xis
(going left/right) and position y on the Y-axis (going up/down). This character can either be
a''spa ce character (to represent a blank space), a . period character (to represent a

possible move in hint mode), or an 'X' dO' (to represent a player's tile). Whenever you
267

see a parameter named board, that para variable is meant to be this list of li
board data structure.

Importing Other Modules

. # Reversi

1
2.
3. import random
4. import sys

We import the random module for its randint() and choice() functions and the
sys module for its exit() function.

Drawing the Board Data Structure on the Screen

6. def drawBoard(board):

7. # This function prints out the board that it was
passed. Returns None.
8. HLINE ="' +---F--F-domdeoefomet e
9. VLINE="| [[[| || IT
10.

11. print" 1 2 3 4 5 6 7 8)
12. print(HLINE)

The drawBoard() function will print out the current gameboard based on the data
structure in board. Notice that each square of the board looks like this:

Since we are going to print the string with the horizontal line (and plus signs at the
intersections) over and over again, we will store that in a constant variable HamhE€l
There are also lines above and below the very center of X or O tile that are nothing but '|'
characters (called "pipe" characters) with three spaces in between. We will store this string
in a constant namedLINE.

Line 11 is the first print() function call executed, and it prints out the labels for the
X-axis along the top of the board. Line 12 prints the top horizontal line of the board.

" 13. fory in range(8): "
268

15 - Reversi

14. print(VLINE)

15. print(y+1, end="")

16. for x in range(8):

17. print(’| %s' % (board[X][y]), end="")
18. print('|)

19. print(VLINE)

20. print(HLINE)

Printing each row of spaces on the board is fagpetitive, so we can use a loop here.
will loop eight times, once for each row. Line 15 prints the label for the Y-axis on the left
sideof the board, and has a comma at the end of it to prevent a new line. This is so we can
have another loop (which again loops eight times, once for each space) print out each space
(along with theX', 'O’, or ' ' character for that space depending on what is stored in
board.

The print() function call inside the inner loop also has a comma at the end of it,
meaning a space character is printed instead of a newline character. This produces the
second space in the pipe-space-tile-space string that we print out, over and over for eight
times. That will produce a single line on the screen that look§ kéeX | X | X
| X[X]|X]| X" (that is, if each of thboard[x][y] values were 'X'). After the
inner loop is done, therint() func tion call on line 18 prints out the findl character
along with a newline (since it does not end with a comma).

(The print()call forces us to always print a newline character or a space at the end of
everything we print. If we do not want this last character, then we can always use the
sys.stdout.write() function,which has a single string parameter that it prints ou
sure toimport sys fi rst before calling this function.)

The code inside the outfar loop that begins on line 13 prints out an entire row of the
board like this:

L
XXX XX XX X]

|
|
|
ORISR S S S

When printed out eight times, it forms the entire board (of course, some of the spaces on
the board will havéO' or ' ' instead of 'X'.:

NN
| XX XXX XXX

S VRS VRS SV SV S S S S——
L L
IX||>|<I|XIXIX|X|X|XI

S VRS VRS SV SV S S S S——

269

RN

| XXX XX X]X]|X]

O I I B B

TS S S S S

[T

| XXX XXX XX

O I I B B

S S S SN S ST S ¥

RN

=X||>|<I|X|X|XIXIXIX|

SO S ST N SN S ST S ¥

RN

=X||>|<I|X||X|XIXIXIX|

SO S ST N SN S ST S ¥

NN

| XXX XXX XX
O I I B B

S S S S S

[11|

lel>|<|IX||X||>I(|IXI|XIX|

OSSN S S S

Resetting the Game Board

An important thing to remember is that the coordinates that we print out to the player are
from 1 to 8, but the indexes in theard data structure are from 0 to 7.

23. def resetBoard(board):

24. # Blanks out the board it is passed, except for the
original starting position.

25. for x in range(8):

26. for y in range(8):

27. board[x][y] =""

Here we use a loop inside a loop to setltbard data structure to be all blanks. We will
call theresetBoard() function whenever we start a new game and want to remove the
tiles from a previous game.

Setting Up the Starting Pieces

29. # Starting pieces:
30. board[3][3] = X'
31. board[3][4] ='O
32. board[4][3] ='O'
33. board[4][4] =X

270

15 - Reversi
When we start new game of Reversi, it isn't enough to have a completely blank |
At the very beginning, each player has two tiles already laid down in the very center, so we
will also have to set those.

We do not have to return the board variable, becabsard is a reference to a list.
Even when we make changes inside the local function's scope, these changes happen in the
global scope to the list that was passed as an argument. (Remember, this is one way list
variables are different from non-list variables.)

Creating a New Game Board Data Structure

36. def getNewBoard():

37. # Creates a brand new, blank board data structure.
38. board =]

39. foriin range(8):

40. board.append(['] * 8)

41,

42, return board

The getNewBoard() function creates a new board data structure and returns it. Line
38 creates the outer list and assigns a reference to this list to baard 40 create the

inner lists using list replication[' (] * 8 is the same as [' ', N

1,] but with less typing.) The for loop here runs line 40 eight
times to create the eight inner lists. The spaces represent a completely empty game board.

Checking if a Move is Valid

45. def isValidMove(board, tile, xstart, ystart):

46. # Returns False if the player's move on space xstart,
ystart is invalid.

47. #If itis a valid move, returns a list of spaces
that would become the player's if they made a move here.

48. if board[xstart][ystart] ="' or not isOnBoard
(xstart, ystart):

49, return False

50.

51. board[xstart][ystart] = tile # temporarily set the
tile on the board.

52.

53. if tile =="'X"

54, otherTile ='O'
55. else:

56. otherTile = 'X'
57.

58. tilesToFlip =]

isValidMove() is one of the more complicated functions. Given a board data
271

structure, the player's tile, and the XY coordinates for pl¢ move, this function shoul
return True if the Reversi game rules allow that move and False if they don't.

The easiest check we can do to disqualify a move is to see if the XY coordinates are on
the game board or if the space at XY is not empty. This is what the if statement on line 48
checks for. isOnBoard() is a function we will write that makes sure both the X and Y
coordinates are between 0 and 7.

For the purposes of this function, we will go ahead and mark the XY coordinate pointed
to by xstart and ystart with the player's tile. We set this place on the board back to a
space before we leave this function.

The player's tile has been passed to us, but we will need to be able to identify the other
player's tile. If the player's tile is 'X' then obviously the other player's tile is '‘CAnd it is
the same the other way.

Finally, if the given XY coordinate ends up as a valid position, we will return a list of all
the opponent's tiles that would be flipped by this move.

59. for xdirection, ydirection in [[O, 1], [1, 1], [1,
o], [1,-1], [0, -1], [-1, -1], [-1, O], [-1, 1]}

The for loop iterates through a list of lists which represent directions you can move on
the game board. The game board is a Cartesian coordinate system with an X and Y
direction. There are eight directions you can move: up, down, left, right, and the four
diagonal directions. We will move around the board in a direction by adding the first value
in the two-item list to our X coordinate, and the second value to our Y coordinate.

Because the X coordinates increase as you go to the right, you can "move" to the right by
adding 1 to the X coordinate. Moving to the left is the opposite: you would subtfact
add -1) from the X coordinate. We can move up, down, left, and right by adding or
subtracting to only one coordinate at a time. But to move diagonally, we need to add or
subtract to both coordinates. For example, adding 1 to the X coordinate to move right and
adding -1 to the Y coordinate to move up would result in moving to the up-right diagonal
direction.

Checking Each of the Eight Directions

Here is a diagram to make it easier to remember which two-item list reprefectis
direction

272

15 - Reversi

X increases el

(=1,-1))10,-17([1,-1]

K17
[=1,0] = =y [1,0]

v 4 N

(=1,11 [O0,17] [1,1]

e SBS'D?JQU! ’{

Figure 15-7: Each two-item list represents one of the eight directions.

59. for xdirection, ydirection in [[O, 1], [1, 1], [1,
0], [a,-1],][0,-1],[-1, -1], [-1, O], [-1, 1]]:

60. X, Y = xstart, ystart
61. X += xdirection # first step in the direction
62. y += ydirection # first step in the direction

Line 60 sets an x anglvariable to be the same value as xstart and ystart ,
respectively. We will change x anydto "move" in the direction that xdirection and
ydirection dictate. xstart and ystart will stay the same so we can remember

which space we originally intended to check. (Remember, we need to set this place back to
a space character, so we shouldn't overwrite the values in them.)

We make the first step in the direction as the first part of our algorithm.

63. if isOnBoard(X, y) and board[x][y] == otherTile:

64. # There is a piece belonging to the other
player next to our piece.

65. X += xdirection

66. y += ydirection

67. if not isOnBoard(X, y):

68. continue

Remember, in order for this to be a valid move, the first step in this direction must be 1)
on the board and 2) must be occupied by the other player's tile. Otherwise there is no
chance to flip over any of the opponent's tiles. In that case, the if statement on line 63 is
not True and execution goes back to tha statement for the next direction.

273

But if the firs space does have the other player's tile, then we should keep procet
that direction until we reach on of our own tiles. If we move off of the board, then we
shoud continue back to the for statement to try the next direction.

69. while board[x][y] == otherTile:

70. X += xdirection

71. y += ydirection

72. if not isOnBoard(X, y): # break out of
while loop, then continue in for loop

73. break

74. if not isOnBoard(X, y):

75. continue

The while loop on line 69 ensures that x anglkeep going in the current direction as
long as we keep seeing a trail of the other player's tiles. If x andve off of the board,
we break out of théor loop and the flow of execution moves to line 74. What we really
want to do is break out of the while loop but continue in the foloop. But if we put a
continue statement on line 73, that would only continue to thehile loop on line 69.

Instead, we recheahot isOnBoard(x, y) on line 74 and then continue from
there, which goes to the next direction in the for statement. It is important to know that
break and continue will only break or continue in the loop they are called from, and
not an outer loop that contain the loop they are called from.

Finding Out if There are Pieces to Flip Over

76. if board[x][y] == tile:

77. # There are pieces to flip over. Go in
the reverse direction until we reach the original space,
noting all the tiles along the way.

78. while True:

79. X -= xdirection

80. y -= ydirection

81. if x == xstart and y == ystart:
82. break

83. tilesToFlip.append([x, y])

If the while loop on line 69 stopped looping because the condition Watse, then
we have found a space on the board that holds our own tile or a blank space. Line 76
checks if this space on the board holds one of our tiles. If it does, then we have found a
valid move. We start a new while loop, this time subtractimgand y to move them in the
opposite direction they were originally going. We note each space between our tiles on the
board by appending the space to the tilesToFlip list.

We break out of the while loop oncex and y have returned to the original position

(which was still stored in xstart and ystart).
274

15 - Reversi

85. board[xstart][ystart] ="' # restore the empty space

86. if len(tilesToFlip) == 0: # If no tiles were flipped,
this is not a valid move.

87. return False

88. return tilesToFlip

We perform this check in all eight directions, and afterwardsldgsI oFlip list
will contain the XY coordinates all of our opponent's tiles that would be flipped if the
player moved on xstart, ystart. Remember, the isValidMove() function is only
checking to see if the original move was valid, it does not actually change the data structure
of the game board.

If none of the eight directions ended up flipping at least one of the opponent's tiles, then

tilesToFlip would be an empty list and this move would not be valid. In that case,
isValidMove() should return False . Otherwise, we should return tilesToFlip.

Checking for Valid Coordinates

91. defisOnBoard(X, y):

92. # Returns True if the coordinates are located on the
board.

93. returnx>=0andx<=7andy>=0andy <=7

isOnBoard() is a function called from isValidMove() , and is just shorthand for
the rather complicated Boolean expression that returns True if hathd y are in
between 0 and 7. This function lets us make sure that the coordinates are actually on the
game board.

Getting a List with All Valid Moves

96. def getBoardWithValidMoves(board, tile):

97. # Returns a new board with . marking the valid moves
the given player can make.

98. dupeBoard = getBoardCopy(board)

99.
100. for x, y in getValidMoves(dupeBoard, tile):
101. dupeBoard[x][y] ="'

102. return dupeBoard

getBoardWithValidMoves() is used to return a game board data structure that has
"." characters for all valid moves on the board. This is used by the hints mode to display
to the player a board with all possible moves marked on it.

Notice that this function create duplicate game board data structure instee
275

modifying the one passed to it theboard parameter. Line 100 cal
getValidMoves(), which returns a list of xy coordinates with all the legal moves the
player could make. The board copy is then marked with a period in those spaces. How
getValidMoves() works is described next.

105. def getVvalidMoves(board, tile):

106. # Returns a list of [x,y] lists of valid moves for
the given player on the given board.

107. validMoves =]

108.

109. for x in range(8):

110. for y in range(8):

111. if isValidMove(board, tile, x, y) != False:
112. validMoves.append([X, y])

113. return validMoves

The getValidMoves() function returns a list of two-item lists that hold the XY

coordinates for all valid moves for tile's player, given a particular game board data structure
in board.

This function uses two loops to check every single XY coordinate (all sixty four of them)
by calling isValidMove() on that space and checking if it returns False or a list of
possible moves (in which case it is a valid move). Each valid XY coordinate is appended to
the list, validMoves.

The bool () Function

Remember how you could use the int()and str() functions to get the integer and
string value of other data types? For example, str(42) would return the string '42', and
int("'100") would return the integer 100.

There is a similar function for the Boolean data type, bool(). Most other data types
have one value that is considered fda¢se value for that data type, and every other value
is consider True. The integer 0, the floating point numife®, the empty string, the
empty list, and the empty dictionary are all considered to be False when used as the
condition for an if or loop statement. All other values afeue. Try entering the
following into the interactive shell:

>>> bool(0)
False

>>> h0ool(0.0)
False

>>> pool(")
False

>>> pool([])

276

15 - Reversi
False

>>> bool({})

False

>>> bool(1)

True

>>> bool('Hello")

True

>>> bool([1, 2, 3, 4, 5])
True

>>> pool({'spam".'cheese’, 'fizz":'buzz'})
True

>>>

Whene/er you have a condition, imagine that the entire condition is placed inside a call
to bool() as the parameter. Conditions are automatically interpreted as Boolean values.
This is similar to howprint() can be passed non-string values and will automatically
interpret them as strings when they print.

This is why the condition on line 111 works correctly. The call to the isValidMove()
function either returns the Boolean value False or a non-empty list. If you imagine that
the entire condition is placed inside a call to bool(), thelRalse becomes bool
(False) (which, of course, evalutes to False). And a non-empty list placed as the
parameter tdool() will return True. This is why the return value of isValidMove()
can be used as a condition.

Getting the Score of the Game Board

116. def getScoreOfBoard(board):

117. # Determine the score by counting the tiles. Returns
a dictionary with keys 'X' and 'O".

118. xscore =0

1109. oscore =0

120. for x in range(8):

121. for y in range(8):
122. if board[x][y] == X"
123. xscore += 1
124. if board[x][y] =="'0O"
125. oscore +=1

126. return {'X":xscore, 'O":.0score}

ThegetScoreOfBoard() function uses nested for loops to check all 64 spaces on
the board (8 rows times 8 columns per row is 64 spaces) and see which tile (if any) is on
them. For each 'X' tile, the code incrementscore. For each 'O' tile, the code
incrementoscore.

Notice that this function does i return a tw-item list of the scores. A tv-item list
277

might be a bit confusin because you may forget which item is for X and which ite
for O. Instead the function returns a dictionary with K&ys nd'O' whose values are
the scores.

Getting the Player's Tile Choice

129. def enterPlayerTile():

130. # Let's the player type which tile they want to be.

131. # Returns a list with the player's tile as the first
item, and the computer's tile as the second.

132, tile="

133. while not (tile =="X" or tile =="'0O"):
134. print('Do you want to be X or O?')
135. tile = input().upper()

This function asks the player which tile they want to be, either "X or 'O'. The for
loop will keep looping until the player types in 'X' 0iO'.

137. #the first element in the tuple is the player's
ti | e, the second is the computer's tile.

138. iftile=="X'

139. return ['X', ‘O]
140. else:

141. return ['O', 'X]

The enterPlayerTile() function then returns a two-item list, where the player's
tile choice is the first item and the computer's tile is the second. We use a list here instead
of a dictionary so that the assignment statement calling this function can use the multiple
assignment trick. (See line 252.)

Determining Who Goes First

144. def whoGoesFirst():
145. # Randomly choose the player who goes first.
146. if random.randint(0, 1) == 0:

147. return ‘computer'
148. else:
149. return ‘player'

The whoGoesFirst() function randomly selects who goes first, and returns either the
string ‘computer’ or the string 'player'.

278

15 - Reversi

Asking the Player to Play Again

152. def playAgain():
153.

154.
155.

This function returns True if the player wants to
play again, otherwise it returns False.

print('Do you want to play again? (yes or no)')

return input().lower().startswith('y")

We have used the playAgain() in our previous games. If the player types in
something that begins with 'y', then the function returisue. Otherwise the function
returns False.

Placing Down a Tile on the Game Board

158. def makeMove(board, tile, xstart, ystart):
159.

160.

161.

Place the tile on the board at xstart, ystart, and
flip any of the opponent's pieces.
Returns False if this is an invalid move, True if
it is valid.
tilesToFlip = isValidMove(board, tile, xstart,
ystart)

makeMove() is the function we call when we want to place a tile on the board and flip
the other tiles according to the rules of Reversi. This function modifies the board data
structure that is passed as a parameter directly. Changes made to the board variable
(because it is a list) will be made to the global scope as well. Most of the work is done by
isValidMove(), which returns a list of XY coordinates (in a two-item list) of tiles that
need to be flipped. (Remember, if the the xstart and ystart arguments point to an
invalid move, then isValidMove() will return the Boolean value False.)

163.
164.
165.
166.
167.
168.
169.

if tilesToFlip == False:
return False

board[xstart][ystart] = tile
for x, y in tilesToFlip:

board[x][y] = tile
return True

If the return value of isValidMove() was False, then makeMove() will also
return False.

Otherwise, isValidMove() would have returned a list of spaces on the board to put
down our tiles (the 'X' or 'O’ string in tile). Line 166 sets the space that the player has
moved on, and the forloop after that sets all the tiles that are in tilesToFlip .

279

Copying the Board Data Structure

172. def getBoardCopy(board):
173. # Make a duplicate of the board list and return the

duplicate.
174. dupeBoard = getNewBoard()
175.
176. for x in range(8):
177. for y in range(8):
178. dupeBoard[x][y] = board[x][y]
179.

180. return dupeBoard

getBoardCopy() is different from getNewBoard() . getNewBoad() will create
a new game board data structure which has only empty spaces. getBoardCopy() will
create a new game board data structure, but then copy all of the pieces in the board
parameter. This function is used by our Al to have a game board that it can change around
without changing the real game board. This is like how you may imagine making moves on
a copy of the board in your mind, but not actually put pieces down on the real board.

A call to getNewBoard() handles getting a fresh game board data structure. Then the

nested for loops copies each of the 64 tiles from board our duplicate board,
dupeBoard.

Determining if a Space is on a Corner

183. def isOnCorner(x, y):

184. # Returns True if the position is in one of the four
corners.

185. return(x ==0andy==0)or (x==7 and y == 0) or
(x==0andy==7)or(x==7andy==7)

This function is much like isOnBoard(). Because all Reversi boards are 8 x 8 in size,
we only need the XY coordinates to be passed to this function, not a game board data
structure itself. This function returns True if the coordinates are on either (0,0), (7,0), (0,7)
or (7,7). Otherwise isOnCorner() returns False.

Getting the Player's Move

188. def getPlayerMove(board, playerTile):

189. # Let the player type in their move.

190. # Returns the move as [X, y] (or returns the strings
'hints' or 'quit’)

191. DIGITS1TO8="123456 7 8'.split()

280

15 - Reversi
ThegetPlayerMove() function is calle to let the player type in the coordinate

their next move (and check if the move is valid). The player can also type in 'hints' to
turn hints mode on (if it is off) or off (if it is on). The player can also type in 'quit’' to
quit the game.

The DIGITS1TOS8 constant variable is the ligt', '2', '3', '4', '5',
'6', '7", '8']. We create this constant because it is easier type DIGITS1TOS8 than
the entire list.

192. while True:

193. print('Enter your move, or type quit to end the
game, or hints to turn off/on hints.")

194. move = input().lower()

195. if move =="quit"

196. return ‘quit’

197. if move == 'hints":

198. return 'hints’

The while loop will keep looping until the player has typed in a valid move. First we
check if the player wants to quit or toggle hints mode, and return the string 'quit' or
'hints’. We use the lower() method on the string returned by input() so the player
can type 'HINTS' or 'Quit’ but still have the command understood by our game.

The code that calls getPlayerMove() will handle what to do if the player wants to
quit or toggle hints mode.

200. if len(move) == 2 and move[0] in DIGITS1TOS8 and
move[1] in DIGITS1TOS:

201. x = int(move[0Q]) - 1

202. y = int(move[1]) - 1

203. if isValidMove(board, playerTile, x, y) ==
False:

204. continue

205. else:

206. break

Our game is expecting that the player would have typed in the XY coordinates of their
move as two numbers without anything in between themifEtatement first checks
that the size of the string the player typed i.i&fter that, the if statement also checks
that both move[0] (the first character in the string) and move[1] (the second character
in the string) are strings that exist in DIGITS1TO&hich we defined at the beginning of
the function.

Remember that our game board data structures have indexes from 0 to 7, not 1 to 8. We
show 1 to 8 when we print the board using drawBoard() because people are used to

281

numbers beginning a instead of 0. So when we convert the strincmove[0] anc
move[1] to integers, we also subtract.

Even if the player typed in a correct move, we still need to check that the move is
allowed by the rules of Reversi. We do this by calling isValidMove(), passing the
game board data structure, the player's tile, and the XY coordinates of the move. If
isValidMove() returns False, then we execute the continue statement so that the
flow of execution goes back to the beginning ofilinle loop and asks the player for the
move again.

If isvalidMove() does not return False , then we know the player typed in a valid
move and we should break out of the while loop.

207. else:

208. print(‘"That is not a valid move. Type the x
digit (1-8), then the y digit (1-8).")

2009. print('For example, 81 will be the top-right
corner.")

If the if statement's condition on line 200 wdzalse, then the player did not type in a
valid move. We should display